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ABSTRACT
Adoptive T-cell therapy (ACT) is an emerging paradigm in which T cells are genetically modified to target
cancer-associated antigens and eradicate tumors. However, challenges treating epithelial cancers with
ACT reflect antigen targets that are not tumor-specific, permitting immune damage to normal tissues, and
preclinical testing in artificial xenogeneic models, preventing prediction of toxicities in patients. In that
context, mucosa-restricted antigens expressed by cancers exploit anatomical compartmentalization which
shields mucosae from systemic antitumor immunity. This shielding may be amplified with ACT platforms
employing antibody-based chimeric antigen receptors (CARs), which mediate MHC-independent recog-
nition of antigens. GUCY2C is a cancer mucosa antigen expressed on the luminal surfaces of the intestinal
mucosa in mice and humans, and universally overexpressed by colorectal tumors, suggesting its unique
utility as an ACT target. T cells expressing CARs directed by a GUCY2C-specific antibody fragment
recognized GUCY2C, quantified by expression of activation markers and cytokines. Further, GUCY2C CAR-T
cells lysed GUCY2C-expressing, but not GUCY2C-deficient, mouse colorectal cancer cells. Moreover,
GUCY2C CAR-T cells reduced tumor number and morbidity and improved survival in mice harboring
GUCY2C-expressing colorectal cancer metastases. GUCY2C-directed T cell efficacy reflected CAR affinity
and surface expression and was achieved without immune-mediated damage to normal tissues in
syngeneic mice. These observations highlight the potential for therapeutic translation of GUCY2C-directed
CAR-T cells to treat metastatic tumors, without collateral autoimmunity, in patients with metastatic
colorectal cancer.

Abbreviations: ACT, adoptive cell therapy; CAR, chimeric antigen receptor; GFP, green fluorescent protein; GUCY2C,
guanylyl cyclase C; TBI, total body irradiation

KEYWORDS
Adoptive immunotherapy;
chimeric antigen receptors;
colorectal cancer; gene
therapy; guanylyl cyclase C

Introduction

Colorectal cancer (CRC) is the fourth leading cause of cancer,
and the second leading cause of cancer-related death in the
United States and world.1 While surgical excision of primary
tumors can be curative, particularly at the earliest stages of dis-
ease, about 50% of patients with colorectal cancer ultimately
die of distant metastases.1 While chemo-, radio-, and targeted
therapies extend survival to about 24 mo, less than 15% of
patients with metastatic CRC survive beyond 5 y,1 highlighting
the unmet need for new therapeutic paradigms for this disease.

Adoptive T-cell therapy (ACT) is an emerging platform2 to
treat patients with advanced cancer employing autologous
tumor-specific T cells that are expanded ex vivo and transferred
back into patients. While initial approaches employed tumor-
infiltrating lymphocytes (TILs) to treat melanoma,3 genetic
modification of bulk peripheral blood T cells to express anti-
gen-specific receptors theoretically extends this approach to all

cancers, with notable success in treating leukemia and neuro-
blastoma.4-6 However, ACT has had limited utility against epi-
thelial tumors, reflecting unresolved issues surrounding
toxicities. Indeed, employing receptors directing genetically
modified T cells to target antigens that are shared by tumors
and normal tissues can produce severe autoimmune damage
and patient death.7,8 Moreover, ACT products examined clini-
cally have been tested in preclinical mouse models devoid of
endogenous target antigen, incompletely characterizing the
potential for toxicities in normal tissues.9,10 In that context,
T cells engineered to express an affinity-enhanced TCR target-
ing the colorectal tumor antigen carcinoembryonic antigen
(CEA), also broadly expressed by intestinal epithelial cells, pro-
duced severe colitis in patients.8 Similarly, T cells modified to
express an antibody-based chimeric antigen receptor (CAR)
targeting the tumor antigen ERBB2 (Her-2) produced lethal
pneumonitis in the only patient receiving this therapy,
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reflecting Her-2 expression in lung.7 These considerations
highlight the importance of identifying tumor-selective anti-
gens, immune cell platforms that optimally discriminate tumor
and normal tissues, and syngeneic preclinical models to define
the biology, efficacy, and safety of new ACT paradigms.11-13

Guanylyl cyclase C (GUCY2C) is a membrane-bound
cyclase whose cell-surface expression is confined to the apical
surfaces of intestinal epithelial cells and exhibits limited expres-
sion in extra-intestinal tissues of humans and mice.14,15 Of sig-
nificance, GUCY2C is a cancer mucosa antigen,16 universally
overexpressed by primary and metastatic human CRCs and is
ectopically expressed in esophageal and gastric cancers associ-
ated with intestinal dysplasia.14,15,17,18 Moreover, anatomical
segregation of GUCY2C on the luminal surface of the intestinal
epithelium19-22 limits access to systemically delivered
GUCY2C-targeted molecules permitting diagnostic imaging23

and monoclonal antibody-based therapy24,25 of colorectal can-
cer metastasis without recognition of intestinal epithelium. Fur-
ther, GUCY2C vaccines induce CD8C T cell and antibody
responses that eliminate metastatic colorectal tumors, without
autoimmunity, in syngeneic mouse models26-28 and this plat-
form is currently being tested in humans.29

Beyond vaccines, luminal compartmentalization of GUCY2C
offers an intriguing solution to toxicities of current ACT para-
digms against metastatic CRC. Moreover, a syngeneic mouse
model, in which endogenous target antigen expression in nor-
mal tissue and tumors closely models humans, offers a unique
opportunity to directly test CAR-T cell therapeutic efficacy and
toxicity. The present study examined the ability of CAR-T cells
directed to murine GUCY2C to treat established parenchymal
CRC metastases without autoimmunity. This study establishes
proof-of-principle for safe and effective GUCY2C CAR-T cell
therapy, which can be translated to CRC patients.

Results

GUCY2C CAR-T cells

Monoclonal antibodies targeting the GUCY2C extracellular
domain (GUCY2CECD) generated from hybridomas (MS7, MS20,
and MS24) recognized purified GUYC2C (Fig. 1A), GUCY2C in
the colon (Fig. 1B), and small intestine (Fig. S1) of Gucy2cC/C, but
not Gucy2c¡/¡, mice; and GUCY2C-expressing, but not
GUCY2C-deficient, CT26 murine colorectal cancer cells (Fig. 1C).

Figure 1. Characterization of GUCY2C-specific antibodies and CAR constructs. (A) Monoclonal antibodies generated against GUCY2C (MS7, MS20, and MS24) were
assessed by ELISA for specific binding to GUCY2CECD or negative control bovine serum albumin (BSA) plated at 1 mg/mL, ����p < 0.0001 (Two-way ANOVA of GUCY2C vs.
BSA – binding for each mAb). (B) Wild-type (Gucy2cC/C) or GUCY2C-deficient (Gucy2c¡/¡) mouse colon sections were stained with GUCY2C-specific monoclonal antibodies
(green), demonstrating specificity of antibodies for GUCY2C in the intestine. DAPI (blue). Representative of three sections each. (C) Flow cytometry analysis was performed
on GUCY2C-deficient (CT26) and GUCY2C-expressing (CT26.GUCY2C) CT26 mouse colorectal cancer cells stained with GUCY2C mAbs. Results are representative of two
experiments. (D) A third generation CAR construct was synthesized containing the BiP signal sequence, scFv, the CD8a hinge region, the transmembrane and intracellular
domain of CD28, the intracellular domain of 4-1BB (CD137) and the intracellular domain of CD3z. The CAR construct was inserted into the MSCV retroviral plasmid pMIG
upstream of an IRES-GFP marker. (D) Murine CD8C T cells transduced with a retrovirus containing a Control CAR or CARs derived from GUCY2C antibodies (MS7 and
MS24) were labeled with varying concentrations of purified 6xHis-GUCY2CECD (0–10 mM) detected with a5xHis-Alexa-647 conjugate. Flow plots (Fig. S3) were gated on
live CD8C cells and the mean fluorescence intensity (MFI) indicated 6xHis-GUCY2CECD binding on live CD8C transduced (GFPC) cells. MS7 and MS24 binding curves were
compared by extra-sum-of-squares F test. Data represent mean § standard deviation of three experiments.
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Heavy and light chain variable region sequences from each of the
GUCY2C-specific hybridomas were used to generate third-genera-
tion CARs (Fig. 1D), which were inserted into a retroviral construct
used to infect T cells with~65% transduction efficiencies (Fig. S2).
GUCY2C-binding avidity was quantified by incubating CAR-T
cells with increasing concentrations of purified 6xHis-tagged
GUCY2CECD, followed by detection with labeled a6xHis antibody
and assessment by flow cytometry (Fig. 1D and Fig. S3). GUCY2C
binding was detected with constructs derived from the MS7 and
MS24, but not MS20, antibodies. CARs derived fromMS24 exhib-
ited~22-fold greater avidity (Kav 44.3 nM vs. 994.2 nM; pD 0.0567)
and ~5-fold greater surface expression (Bmax 741.5 vs. 144.2;
p < 0.0001) compared to MS7-derived CARs (Fig. 1D), similar to
the higher avidity of MS24 monoclonal antibody in comparison to
MS7 (Fig. S4).

GUCY2C CARs mediate antigen-specific activation of T cells

MS7 and MS24, but not MS20 or control, CAR-T cells upregu-
lated CD25 and CD6930 when stimulated with immobilized
GUCY2CECD, but not BSA (Fig. 2). All T cells produced com-
parable levels of CD25 and CD69 when stimulated with PMA
and ionomycin, confirming that transduction with different
CARs did not impact T cell activation. MS24 CAR mediated
greater activation than MS7 CAR (Fig. 2), consistent with its
~22-fold higher avidity (Fig. 1D). MS20 CAR was excluded from
further consideration reflecting its inability to bind GUCY2-
CECD (Fig. S3) or mediate GUCY2C-dependent T cell activa-
tion (Fig. 2). MS7 and MS24, but not control, CAR-T cells
produced effector cytokines IFNg, TNFa, and MIP-1a when
stimulated with immobilized GUCY2CECD, but not BSA
(Fig. 3). Importantly, MS24 CAR-T cells exhibited greater poly-
functionality than MS7 CAR-T cells (Fig. 3B) characterized by
a reduction in cells producing no cytokines (p < 0.0001, Two-
way ANOVA) and an increase in cells producing two or three
cytokines (p < 0.05 and p < 0.0001, respectively, Two-way
ANOVA) following GUCY2C stimulation. Similarly, MS7 and
MS24, but not control, CAR-T cells lysed GUCY2C-expressing,
but not GUCY2C-deficient, CT26 mouse colon cancer cells

(Fig. 4). As expected, MS24 CAR T cells lysed GUCY2C-
expressing CT26 cells more rapidly than MS7 CAR-T cells
(half-maximal lysis at 54 min vs. 200 min; p < 0.05; Figs. 4B
and D) consistent with its higher avidity (Fig. 1D).

GUCY2C CAR-T cells oppose metastatic colorectal cancer

Mice received CT26.GUCY2C cells by tail vein to induce lung
metastases,31 followed 3 d later by 5 Gy total body irradiation
(TBI) and 1 £ 107 T cells.32 A non-myeloablative dose of 5 Gy
TBI was administered prior to T cell transfer to enhance the
efficacy of adoptive T cell therapy by reducing sinks for the
homeostatic cytokines IL-7 and IL-15.33,34 The number of
tumors in lungs of mice treated with GUCY2C CAR-T cells
was significantly reduced compared to mice treated with con-
trol CAR-T cells (Figs. 5A and B). Moreover, GUCY2C CAR-T
cell-treated mice exhibited reduced morbidity, quantified by
cachexia (Fig. 5C), and improved survival (Fig. 5D). As
expected, morbidity (Fig. 5C) and survival (Fig. 5D) were sig-
nificantly better with MS24, compared to MS7, CAR-T cells.

GUCY2C CAR-T cells do not induce autoimmunity

MS24 CAR-T cells produce the greatest GUCY2C-dependent
T cell activation (Fig. 2), cytokine production (Fig. 3), cytolysis
(Fig. 4), and antitumor efficacy (Fig. 5) without autoimmunity
(Fig. 6). Mice receiving MS24 CAR-T cells were healthy with
no signs or symptoms of inflammatory bowel disease including
failure to thrive, altered bowel habits, or rectal bleeding. MS24
CAR-T cells accumulated in GUCY2C-expressing CT26 lung
metastases (Figs. 6A and B), mediating antitumor immunity
(Fig. 5), but were absent from intestines (Figs. 6A and B), pro-
ducing no T cell-mediated damage quantified by histopathol-
ogy (Figs. 6C and D). Similarly, MS24 CAR-T cell-treated mice
were free of immune-mediated damage in extra-intestinal tis-
sues by histopathology (Fig. 6D) and exhibited normal organ
and metabolic functions quantified by serum chemistries
(Fig. S5).

Figure 2. GUCY2C-specific CARs mediate antigen-dependent T cell activation. 1 £ 106 CAR-expressing T cells were stimulated for 6 h with plate-coated antigen (BSA or
GUCY2C) or PMA and Ionomycin (PMA/IONO). T cell activation markers CD25 (A) and CD69 (B) were quantified by flow cytometry. Histograms are gated on live CD8CGFPC

T cells. Results are representative of three experiments.
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Discussion

This study provides the first proof-of-principle for GUCY2C
CAR-T cells to treat parenchymal colorectal cancer metastases
without autoimmunity in a syngeneic mouse model. Immuno-
logic competence of GUCY2C CARs was reflected by the ability
of GUCY2C, but not control, CAR-T cells to engage GUCY2C
and induce T cell activation (Fig. 2) and effector function
(Figs. 3 and 4). Immunologic competence was associated with
the ability of GUCY2C, but not control, CAR-T cells to induce
GUCY2C-dependent cytokine production (Fig. 3) and in vitro
colorectal cancer cell cytolysis (Fig. 4). Further, GUCY2C, but
not control, CAR-T cells reduced disease burden, improved
morbidity, and produced durable eradication of disease in a
mouse model of GUCY2C-expressing colorectal cancer metas-
tases in lung (Fig. 5). Moreover, therapeutic efficacy was
achieved without immune-mediated tissue damage, in small
and large intestine or other extra-intestinal tissues (Fig. 6 and
Fig. S5). Importantly, the superior therapeutic efficacy and
safety of GUCY2C CAR-T cells was achieved in a syngeneic
mouse model in which GUCY2C was endogenously expressed
in normal tissues in a pattern recapitulating that in humans,
colorectal tumors expressed an identical antigen, and T cells
were directed by CAR receptors to that endogenous antigen.
Taken together, these observations suggest that GUCY2C-tar-
geted CAR-T cells could eradicate tumors without autoimmu-
nity in patients with metastatic colorectal cancer.

One key limitation to translating ACT to epithelial tumors
generally, and colorectal cancer specifically, is the paucity of
tumor-specific antigens to which immune cells can be targeted.
In that context, targeting tumor-associated self-antigens risks

development of “on-target, off-tumor” toxicities and therapy-
limiting autoimmunity.35,36 CEA is an antigen that is normally
expressed by intestinal and lung epithelial cells, and overex-
pressed by colorectal tumors. While T cells directed to CEA
exhibit antitumor efficacy, their administration to patients pro-
duced treatment-limiting colitis.8 Similarly, Her-2 also is
expressed by normal epithelial cells and overexpressed by colo-
rectal tumors, and T cells targeting this antigen produced lethal
immune-mediated damage to normal lung in a patient.7 In
contrast, GUCY2C may be uniquely suited to direct immune
cells to colorectal metastases without autoimmunity due to its
sequestered expression on apical surfaces of intestinal epithe-
lia.19-21 Thus, GUCY2C-targeted CAR T cells eradicated
GUCY2C-expressing pulmonary metastases without immune
damage to intestinal epithelia (Fig. 6). GUCY2C-targeted imag-
ing agents,23 immunotoxins,25 and vaccines26-28 recognize
GUCY2C-expressing metastatic colorectal tumors, but not nor-
mal intestinal epithelia. Indeed, universal overexpression of
GUCY2C on the surface of metastatic tumors,17,18,37 but its
absence on basolateral membranes of epithelial cells19-21 may
shield normal intestine from systemic GUCY2C-targeted thera-
pies. In that context, T cells directed to CEA, whose epitopes
are presented by MHC in apical and basolateral membranes of
intestinal cells, were characterized by antigen-dependent intes-
tinal accumulation and colitis in mouse models38,39 and
patients.8 In contrast, mice treated with GUCY2C CAR-T cells
were free of intestinal accumulation and toxicity (Fig. 6),
underscoring the importance of GUCY2C sequestration in api-
cal membranes to prevent CAR-T cell recognition, accumula-
tion, and toxicity. Beyond intestinal mucosa, GUCY2C
expression recently was described in neurons of hypothalamus,

Figure 3. GUCY2C-specific CARs mediate cytokine production. 1 £ 106 CAR-expressing T cells were stimulated for 6 h with plate-coated antigen (BSA or GUCY2C) or PMA
and Ionomycin (PMA/IONO) in the presence of protein transport inhibitor. Cells were fixed, permeabilized, and stained for the intracellular cytokines IFNg , TNFa, or MIP-
1a and analyzed via flow cytometry. (A) Plots are gated on live GFP- (top) or GFPC (bottom) CD8C T cells. (B) Polyfunctional cytokine graphs depict the percentages of
CAR-T cells producing 0, 1, 2, or 3 cytokines. Plots in (A) are representative of two experiments, and polyfunctional cytokine analysis (B) represent means§ standard devi-
ation of two experiments.
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an immunologically privileged compartment, where it regulates
satiety and appetite.40 GUCY2C levels in hypothalamus are 10-
fold lower than those in intestine.40 In that context, sufficient
quantities of antigen on the surface of cellular targets are neces-
sary to induce CAR T cell activation.41 GUCY2C-targeted CAR
T cells or immunotoxins25 did not damage hypothalamic neu-
rons, supporting the suggestion that they are sequestered from
systemically targeted agents and/or express GUCY2C at levels
below detection by our monoclonal antibodies. Taken together,
the narrow pattern of expression in normal tissues, expression
in compartments which are anatomically shielded or immuno-
logically privileged, and universal overexpression by metastatic
tumors suggest that GUCY2C is uniquely qualified as an anti-
genic target to which T cells can be directed to treat metastatic
CRC without autoimmunity.

Beyond selectivity of expression in normal tissues and
tumors, aligning ACT platforms with patterns of antigen
expression within tissues can minimize treatment-limiting
adverse events. For example, CEA is expressed in apical mem-
branes of intestinal epithelial cells, and is presumably inaccessi-
ble to targeted CAR-T cells which recognize native antigen in
an MHC-independent fashion.5,42 Indeed, CAR-T cells directed
to human CEA did not produce colitis in a transgenic mouse
model recapitulating human CEA expression.38 However,
T cells directed by recombinant TCRs recognize peptide anti-
gens in the context of MHC.43 In turn, MHC-peptide com-
plexes can be presented on basolateral membranes of intestinal
epithelial cells44 or cross-presented by antigen-presenting cells
in tissues or lymphoid organs,45 abrogating the anatomical
shielding of natively-expressed apical membrane proteins.
Indeed, T cells directed by CEA-specific TCRs produce severe
colitis in mice and humans.8,39 Thus, aligning GUCY2C as an
apical target antigen, with CAR platforms to direct MHC-inde-
pendent elimination of tumor cells, should maximize the

benefit of luminal sequestration in normal tissues, optimizing
therapeutic discrimination between tumors and intestine, as
observed here.

Utilization of receptors targeting self-antigens to direct engi-
neered T cells, and the associated incomplete discrimination of
normal tissues and tumors, creates an imperative to define their
safety and therapeutic efficacy in preclinical models that emulate
the expression of target antigens in patients. However, the trans-
lation of ACT to patient-based trials has been based largely on
the safety and efficacy of these paradigms in artificial human
tumor xenograft systems. In some cases, the target antigen was
not expressed in normal tissues, making it impossible to assess
safety.9,10 In other cases, transgenic models attempt to emulate
the expression of the human antigen in normal tissues in
patients. For example, CEA CAR-T cells exhibited antitumor
efficacy without immune-mediated damage to normal tissues in
CEA-transgenic mice.38 Nevertheless, safety profiles achieved
with artificial xenogeneic preclinical models must be viewed
with some caution. Indeed, in other CEA transgenic mouse
models, antitumor efficacy of CEA-specific T cells was associ-
ated with severe immune-mediated colitis.39 More significantly,
a recent clinical trial of CEA-specific T cells induced severe auto-
immune colitis, which represented dose-limiting toxicity and
required discontinuation of therapy.8 Further, human Her-2
transgenic mice treated with large doses of CAR-T cells derived
from the human Her-2 specific antibody 4D5,46 but not the
FRP5 antibody,47 caused death within 4 d of treatment. This
effect was not achieved with lower doses of 4D5 CAR-T cells;
however, a colorectal cancer patient treated with 4D5 CAR-T
cells also died following treatment, with potential evidence of
antigen-specific toxicities in lung epithelium.7 These conflicting
reports highlight the challenges of extrapolating safety profiles
of ACT defined in transgenic mouse models, particularly if anti-
gen expression levels do not mimic those in humans.

Figure 4. Real-time GUCY2C-specific CAR T cell-mediated cytotoxicity. CT26 (A and C) or CT26.GUCY2C (B and D) mouse colorectal cancer cells were seeded at 10,000
cells/well in an E-Plate and CAR-T cells, media, or Triton-X 100 (Triton) were added to the plate 24 h later (timeD 0). The E-Plate was scanned every 15 min to quantify rel-
ative electrical impedance (normalized to timeD 0). (A and B) Solid lines indicate the mean of duplicate wells and surrounding clouds indicate standard deviation. Results
are representative of two experiments. (C and D) % specific lysis values for each CAR-T cell and target cell combination were calculated from the impedance data at the
indicated time points. All statistical tests in (C) and (D) compared (1) Control to MS7, (2) Control to MS24, and (3) MS7 to MS24 (��p < 0.01, ����p < 0.0001, Two-way
ANOVA). (C and D) show the means § standard deviation of two experiments.
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These considerations underscore the importance of estab-
lishing safety and efficacy profiles of ACT in syngeneic models
in which engineered T cells are directed by receptors targeting
antigens endogenously expressed in normal tissues.11 Indeed,
CAR-T cells targeting murine CD19 eliminate B cell leukemia
in mice with concomitant loss of normal B cells,12,48 recapitu-
lating observations in clinical trials.4,5 Separately CAR-T cells
targeting stromal FAP and VEGFR-2 also produce significant
toxicities in mice.13,49 CAR-T cells targeting FAP cause lethal
bone marrow toxicity in mice reflecting FAP expression on
multipotent bone marrow stem cells.13 Further, VEGFR-2
CAR-T cells caused toxicity only in tumor-bearing mice, medi-
ated by CAR-expressing CD4C, but not CD8C, T cells.49 In the
present study, we demonstrated that CAR-T cells directed to
murine GUCY2C eradicated GUCY2C-expressing colorectal
tumors metastatic to lungs, without inducing autoimmunity in
intestine or other normal tissues in mice endogenously express-
ing the target antigen. However, CAR-T cell toxicity typically
reflects acute cytokine production and tissue damage,50 and the
long-term toxicity of GUCY2C CAR-T cell therapy could not
be evaluated here. In that context, GUCY2C CAR-T cell persis-
tence was limited (Fig. S6), reflecting their production in the
presence of IL-2. Recent analysis of the impact of cytokine
milieu during CAR-T cell production and in vivo following
their administration, suggest that alternative cytokine combina-
tions may produce CAR-T cells with enhanced persistence and
antitumor efficacy.51 Indeed, CAR-T cell production in the
presence of IL-2 produced highly differentiated CAR-T cells
with the least in vivo persistence and antitumor efficacy,

compared to IL-7, IL-15, IL-18, IL-21, or no cytokines. Thus, as
cell production methods continue to be refined, toxicity will be
re-evaluated to determine if improving GUCY2C CAR-T cell
persistence and antitumor efficacy concomitantly increases
their associated toxicity targeting antigen-expressing tissues.

Taken together, these observations provide proof-of-prin-
ciple in a uniquely relevant preclinical syngeneic model that
GUCY2C-targeted CAR-T cells could be clinically effective,
without inducing autoimmune tissue damage, in patients
with metastatic colorectal cancer. This paradigm leverages
the unique structural compartmentalization of GUCY2C
endogenously expressed in normal tissues,19-22 and the uni-
versal overexpression of this antigen by metastatic colorectal
tumors.17,18,37 It offers an immunotherapeutic strategy to
treat bulky metastatic disease, which is complementary to
GUCY2C vaccines as secondary prevention of metastatic
disease in CRC patients at risk.26-28 The significance of
these observations can best be appreciated by considering
that metastatic CRC is nearly always fatal, without curative
therapeutic options.1 Moreover, beyond CRC, GUCY2C-tar-
geted ACT offers a unique therapeutic option to treat
metastases in patients with gastric, esophageal, and pancre-
atic cancers which also are universally fatal and which
ectopically express GUCY2C after transformation.17 Trans-
lation of these observations into patients will require the
development of monoclonal antibodies to human GUCY2C,
their incorporation into CAR constructs, and testing of
their therapeutic efficacy in mice harboring human colorec-
tal cancer metastases.

Figure 5. GUCY2C-specific CAR T cells oppose parenchymal colorectal cancer metastases. (A–D) BALB/c mice were injected i.v. with 5 £ 105 CT26.GUCY2C cells to estab-
lish lung metastases. On day 3, mice received a dose of 5 Gy TBI followed by an i.v. injection of~1£ 107 CAR-T cells. Mice were sacrificed on day 24 after tumor inoculation,
lungs were stained with India ink, and tumor nodules were counted (A and B), or mice were followed longitudinally for morbidity (C) and survival (D). (A) Representative
images of lungs collected and stained on day 24. (B) Quantification of metastases in each mouse. (N D 8–9 mice/group; �p < 0.05, ��p < 0.01, and ����p < 0.0001, One-
way ANOVA). (C) Body weight curves of mice relative to initial body weight indicating progression of cancer cachexia, where each line represents an individual mouse.
No Tumor represents curves of unmanipulated mice. (n D 10–13 mice/group; ns D not significant, �� p< 0.01, ��� p< 0.001, One-way ANOVA of total area under the
curve). (D) Survival analysis (n D 10–13 mice/group; ����p < 0.0001, Mantel-Cox log-rank test). All statistical tests in (B–D) compared (1) Control to MS7, (2) Control to
MS24, and (3) MS7 to MS24.
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Materials and methods

Mouse GUCY2C monoclonal antibodies

The monoclonal antibodies (MS7, MS20, and MS24) recognize
mouse GUCY2C,40 CT26.GUCY2C cells,28 and 6xHis-tagged
GUCY2CECD protein.28 GUCY2C-specific antibodies were tested
by ELISA as previously described.28 FACS: CT26 tumor cells were
stained with 10mg/mLGUCY2C-specific antibody follow by detec-
tion with anti-mouse conjugated to Alexa-488 and assessed for sur-
face expression using the BD LSR II flow cytometer.
Immunohistochemistry: intestinal tissues from wild-type and
Gucy2c¡/¡ BALB/c mice were fixed in formalin and paraffin
embedded. Tissue sections were stained with 5 mg/mL GUCY2C-
specific monoclonal antibody followed by detection with anti-
mouse antibody conjugated to Alexa-488 and mounted in ProLong
Gold Antifade Reagent with DAPI (Life Technologies). Images
were captured using the EVOS FLAuto Cell imaging system.

CAR construction

A third generation codon-optimized CAR was synthesized con-
taining the BiP (GRP-78) signal peptide, and scFv from the
murine 4D5 monoclonal antibody specific for human ERBB2,52

CD8a hinge region, CD28 transmembrane and intracellular
domains, and 4-1BB (CD137) and CD3z intracellular domains
in the pMA entry plasmid (GeneArt). CARs derived from the
4D5 antibody served as the negative control CAR in all experi-
ments performed. VL and VH variable regions were cloned
from MS7, MS20, and MS24 hybridomas by RT-PCR using
degenerate primers and linked with a glycine-serine linker
(G4S)4 by overlap extension PCR. Resulting GUCY2C-specific
scFv constructs were subcloned into the synthesized CAR con-
struct, replacing 4D5.

Retrovirus production and T cell transduction

CARs were subcloned into the pMSCV-IRES-GFP (pMIG)
retroviral vector using XhoI and EcoRI restriction sites. The
Phoenix-Eco retroviral packaging cell line (Gary Nolan, Stan-
ford University) was transfected with CAR-pMIG vectors and
the pCL-Eco retroviral packaging vector (Imgenex) using the
Calcium Phosphate ProfectionR Mammalian Transfection
System (Promega). Retrovirus-containing supernatants were
collected 48 h later, filtered through 0.45 mM filters, and ali-
quots were frozen at ¡80�C. Murine CD8C T cells were puri-
fied from BALB/c splenocytes using the CD8aC T cell
Isolation Kit II (Miltenyi Biotec) and subsequently stimulated
with aCD3/aCD28-coated beads (T Cell Activation/Expan-
sion Kit, Miltenyi Biotec) at a 1:1 bead:cell ratio at 1 £ 106

cells/mL in cRPMI (RMPI C 10% FBS, 10 mM HEPES,
0.05 mM 2-mercaptoethanol) with 100 U/mL recombinant
human IL-2 (NCI Repository). The day following stimulation,
1=2 of the culture media was carefully replaced with an equal
volume of thawed retroviral supernatant in the presence of
polybrene (Millipore). Spinoculation was performed at room
temperature for 90 min at 2,500 rpm followed by incubation
at 37�C for 2.5 h at which point cells were pelleted and resus-
pended in fresh media containing IL-2. T cells were expanded
for 7–10 d by daily dilution to 1 £ 106 cells/mL with fresh

cRPMI and IL-2 at which point they were used for functional
assays. All cell counts employed a Muse Cell Analyzer and
Count and Viability Assay (Millipore). Serum lots were not
pretested for performance.

CAR surface detection

CAR-transduced T cells were stained with the Live/Dead
Fixable Aqua Dead Cell Stain kit (Invitrogen), labeled with
varying concentrations of 6xHis-tagged GUCY2CECD for
1 h, stained with the a5xHis Alexa-647 conjugate (Qiagen)
and aCD8b-PE (clone H35.17.2, BD Biosciences) for 1 h,
fixed with 2% PFA and analyzed using the BD LSR II flow
cytometer and FlowJo software (Tree Star). GUCY2C bind-
ing was quantified by determining the mean fluorescence
intensity of Alexa-647 on live CD8C GFPC cells. Non-linear
regression analysis (GraphPad Prism v6) was used to deter-
mine the Kav and Bmax of GUCY2C-CAR binding.

Surface activation marker and intracellular cytokine
staining

CAR-transduced T cells were stimulated for 6 h with antigen
coated on tissue culture plates at 1 mg/mL in PBS overnight at
4�C, or with Cell Stimulation Cocktail (PMA/Ionomycin,
eBioscience). Incubation included the Protein Transport
Inhibitor Cocktail (eBioscience) when assessing intracellular
cytokines. Cells were stained with Live/Dead fixable Aqua
Dead Cell stain kit (Invitrogen) and subsequently stained for
surface markers using the following antibodies: aCD8a-
PerCP-Cy5.5 (clone 53.6-7) and aCD69-PE (clone H1.2F3)
from BD Biosciences and aCD25-PE (clone PC61.5, eBio-
science). Intracellular cytokine staining was performed using
the BD Cytofix/Cytoperm Kit (BD Biosciences) and staining
with the following antibodies: aGFP-Alexa-488 (Invitrogen),
aIFNg-APC-Cy7 (XMG1.2) and aTNFa-PE-Cy7 (MP6-
XT22) from BD Biosciences, and aMIP1a-PE (clone 39624,
R&D Systems). Cells were fixed in 2% PFA and analyzed on a
BD LSR II flow cytometer. Analyses were performed using
FlowJo software (Tree Star).

Real time cell-mediated cytotoxicity assay

The xCELLigence system (Acea Biosciences Inc.) was uti-
lized for assessment of T cell-mediated cytotoxicity.53 Briefly
1 £ 104 CT26 or CT26.GUCY2C targets were plated in
150 mL of DMEM 10% FBS in each well of an E-Plate 16
and grown overnight, quantifying electrical impedance every
15 min, using the RTCA DP Analyzer system (Acea Bio-
sciences Inc.). Approximately 24 h later, 50 mL of CAR-T
cells was added at an effector-to-target (E:T) ratio of 5:1 or
50 mL of media or 10% Triton-X 100 were added as nega-
tive and positive controls, respectively. Cell-mediated killing
was quantified over the next 16 h reading electrical imped-
ance every 15 min. Percent-specific lysis values were calcu-
lated using GraphPad Prism Software v6 for each replicate
at each time point, using impedance values following the
addition of media and Triton for normalization (0% and
100% specific lysis, respectively).
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Metastatic tumor model

BALB/c mice were obtained from the NCI Animal Production
Program (Frederick, MD). Animal protocols were approved
by the Thomas Jefferson University Institutional Animal Care
and Use Committee. Male BALB/c mice were challenged with
5 £ 105 CT26.GUCY2C cells by tail vein injection to establish
lung metastases. On day 3 following tumor injections, mice
received a non-myeloablative dose of 5 Gy total body irradia-
tion in a PanTak, 310 kVe x-ray machine. Mice received~1 £
107 fresh CAR-T cells in 100 mL PBS following irradiation by
tail vein injection. Mice were followed for cachexia (twice
weekly body weights) and survival, or sacrificed at day 23
after tumor cell injection and lungs were stained with India
ink and fixed in Fekete’s solution for tumor enumeration.28

Toxicity

For T cell accumulation, 1 £ 107 MS24 CAR-T cells were
administered to BALB/c mice with CT26.GUCY2C lung
metastases established 14 d earlier following 5 Gy TBI.
Lungs, spleens, and intestines were collected 2 d later, and

tissue sections were stained with anti-GUCY2C (MS20) and
anti-GFP antibodies and counterstained with DAPI. GFPC
MS24 CAR-T cells were quantified in remnant follicles in
spleen, tumor metastases in lungs, and Peyer’s patches in
intestines and normalized to area (mm2). A cell was consid-
ered to be GFPC if fluorescence intensity was above the
background level (set using corresponding GFP-negative
control tissues) associated with a DAPI-stained nucleus in
the same plane. For histopathology, tissues and serum were
collected from mice 6 d after treatment with PBS, 5 Gy
TBI, or 5 Gy TBI and CAR-T cells. Tissues were fixed in
formalin and embedded in paraffin. Sections were stained
with hematoxylin and eosin and scored for toxicity by a
blinded pathologist (P.L.). Scoring criteria are listed in
Table S1. Serum chemistries were commercially determined
(Charles River Laboratories).

Statistical analyses

Statistical analyses were conducted using GraphPad Prism Soft-
ware v6. All results are representative of at least three experi-
ments unless otherwise indicated.

Figure 6. GUCY2C-specific CAR T cells do not induce tissue damage. (A and B) MS24 CAR-T cells were administered to BALB/c mice with CT26.GUCY2C lung metastases
established 14 d earlier following 5 Gy TBI. (A) Lungs, spleens, and intestines were collected 2 d later, and tissue sections were stained with anti-GUCY2C (red) and anti-
GFP (green) antibodies and counterstained with DAPI. (B) GFPC MS24 CAR-T cells were quantified in remnant follicles in spleen, tumor metastases in lungs, and Peyer’s
patches in intestines by immunostaining of GFP. Data represent the mean of four mice. (����p < 0.001, One-way ANOVA compared to accumulation in lung metastases).
(C and D) BALB/c mice were treated with PBS, 5 Gy TBI, 5 Gy TBI C 1 £ 107 Control or MS24 CAR-T cells. On day 6 post-treatment, mice were sacrificed and tissues col-
lected, fixed in formalin, and paraffin embedded. Slides were stained with H&E and scored for pathology. Scale bars indicate 100 mm. (C) Representative H&E-stained
small intestine and colon sections. (D) Inflammatory scoring for all tissues collected. No significant differences between Control and MS24 CAR-T cell treatment groups
were detected (One-way ANOVA).
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Figure S1. GUCY2C staining in small intestine. Wild-type (Gucy2c+/+) or GUCY2C-

deficient (Gucy2c-/-) mouse small intestine sections were stained with GUCY2C-specific 

monoclonal antibodies (green), demonstrating specificity of antibodies for GUCY2C in 

the intestine. DAPI (blue). Representative of 3 sections each. 

  



 

 

 

 

Figure S2. T cell transduction efficiency. Untransduced T cells or T cells transduced 

with retroviruses containing control, MS7, MS20, or MS24 -derived CARs upstream of 

an IRES-GFP transduction marker were gated on live CD8+ T cells. Magenta numbers 

indicate the percentage of GFP+ T cells. 



 

 

Figure S3. Surface CAR detection. Murine CD8+ T cells transduced with a retrovirus 

containing a Control CAR or CARs derived from GUCY2C antibodies (MS7, MS20 and 

MS24) were labeled with varying concentrations of purified 6xHis-GUCY2CECD (0-10 

μM) detected with α5xHis-Alexa-647 conjugate. Flow plots were gated on live CD8+ 

cells. Blue numbers indicate the mean fluorescence intensity (MFI) of 6xHis-

GUCY2CECD binding on live CD8+ transduced (GFP+) cells. Data are from 3 

experiments. 

  



 

 

 

Figure S4. Relative GUCY2C antibody avidities. Relative GUCY2C antibody avidities 

were determined using a potassium thiocyanate elution ELISA.1, 2 GUCY2C protein was 

coated onto ELISA plates and MS7, MS20 and MS24 antibody were then bound to 

GUCY2C. Wells containing antibody bound to GUCY2C were then exposed to various 

concentrations of the chaotropic agent potassium thiocyanate (KSCN) and resistance to 

elution was used as a measure of avidity. MS7 eluted at very low KSCN concentrations, 

while MS20 and MS24 required high concentrations of KSCN to elute, indicating that 

MS7 has a substantially lower avidity than MS20 or MS24.  



 

 

Figure S5. Mouse serum biochemistries following treatment with GUCY2C CAR-T 

cells. (A-N) BALB/c mice were treated with PBS, 5 Gy TBI, 5 Gy TBI + 1x107 Control or 

MS24 CAR-T cells. On day 6 post-treatment, mice were sacrificed, serum collected, and 

serum chemistry profiles analyzed (Charles River Laboratories). No significant 

differences between Control and MS24 CAR-T cell treatment groups were detected 

(One-way ANOVA). 

  



 

 

 

Figure S6. GUCY2C CAR-T cell persistence. (A-C) Blood or splenocytes were 

collected from naïve mice, or mice following CAR-T cell transfer, and stained with 

αCD4, αCD8, and αGFP. (A) Representative splenocyte plots and gating hierarchy 14 

days after CAR-T cell transfer, demonstrating that a small number of GFP+ CAR-T cells 

are detectable. (B) Number of live CD8+GFP+ T cells/uL of blood 48 hours after 

adoptive transfer. No GFP+ CAR-T cells were detectable compared to naïve mice which 

received no irradiation or CAR-T cell transfer. (C) Splenocyte samples collected 14 days 

after CAR-T cell transfer were analyzed as in A. Here, the entire splenocyte population 

was analyzed to quantify the total number of GFP+ cells/spleen. The % injected dose 

was then calculated (GFP+ cells/spleen ÷ 3x106 GFP+ cells/mouse × 100%). 



 

Table S1. T-cell mediated tissue damage scoring system 
Organs T-cell mediated tissue damage 
Colon 
and small 
intestine3 

Score Epithelial lesion Mesenchymal lesion Total 
score 

0 Normal No inflammatory infiltrates 0 
1 Loss of goblet cells Inflammatory infiltrate around crypt 

base 
2 

2 Loss of goblet cells in large areas Inflammatory infiltrate reaching 
muscularis mucosae 

4 

3 
 
 

Loss of crypts Extensive infiltration reaching the 
muscularis mucosae, thickening of 
the mucosa with abundant edema 

6 

4 Loss of crypts in large area Inflammatory infiltration of the 
submucosa 

8 

Stomach4 0 Normal No inflammatory infiltrates 0 
1 Single cells apoptosis noted in 

medium power 
Rare inflammatory infiltrates 2 

2 Evidence of epithelial damage by 
crypt/glandular abscesses, 
epithelial flattening or glandular 
dilation 

Mild inflammatory infiltrates 4 

3 Dropout of one or more 
crypts/glands 

Moderate inflammatory infiltrates 6 

4 Total epithelial denudation  Confluent inflammatory infiltrates 8 
Salivary 
gland5 

0 Normal No inflammatory infiltrates 0 
1 Mild exocytosis of lymphocytes 

into epithelium salivary gland  
Mild interstitial inflammation  2 

2 Exocytosis of lymphocytes, mild 
acinar destruction, ductal 
dilatation, squamous metaplasia, 
mucous pooling, duct cell 
proliferation 

Moderately intense band of 
lymphocytes in submucosa, mild 
fibrosis 

4 

3 Exocytosis of lymphocytes into 
epithelial salivary gland, diffuse 
destruction of ducts and acini 

Heavy submucosal band of 
lymphocytes, marked interstitial 
lymphocytic infiltrates 

6 

4 Nearly complete loss of acini, 
marked dilated ducts  

Interstitial fibrosis with or without 
inflammation 

8 

Lung6 Score Vessels Small airways Total 
score 

0 No evidence of mononuclear cell 
infiltration, hemorrhage or 
necrosis 

No evidence of bronchiolar 
inflammation 

0 

1 Scattered, infrequent perivascular 
mononuclear infiltrates in 
alveolated lung parenchyma and 
blood vessels are cuffed by 
lymphocytes forming a ring of two 
or three cells in thickness within 
the perivascular adventitia 

Low-grade small airway 
inflammation without epithelial 
damage 

2 

2 Frequent perivascular 
mononuclear infiltrates are seen 
surrounding venules and 
arterioles and are readily 
recognizable at low magnification 

High-grade small airway 
inflammation, with individual cell 
apoptosis, to ulcers to total 
denudation of epithelium 

4 



 

 
 
 

3 Easily recognizable cuffing of 
venules and arterioles by dense 
perivascular mononuclear cell 
infiltrates, associated with 
endothelialitis 

 3 

4 Diffuse perivascular, interstitial 
and air-space infiltrates of 
mononuclear cells with prominent 
alveolar pneumocyte damage 
and endothelialitis  

 4 

Heart 6 Score Cardiomyocyte damage Total 
score 

0 Normal cardiomyocyte profile 0 
1 Mononuclear cell infiltrates with or without myocyte damage 1 
2 Diffuse mononuclear cell infiltrates forming space-occupying lesion 2 
3 Disruption of normal architecture with polymorphous infiltrates, edema, 

hemorrhage and vasculitis  
3 

Liver7 Score Periportal area and centrilobular damage Total 
score 

0 Normal, without significant abnormality 0 
1 Mild damage, less than 50% of the portal tracts are involved by 

inflammation accompanied by bile duct damage and/or endotheliitis 
1 

2 Moderate damage, more than 50% of the portal tracts are involved by 
inflammation accompanied by bile duct damage and/or endotheliitis 

2 

3 Severe, centrilobular necrosis and/or significant piecemeal necrosis  3 
Kidney8 Score Interstitial inflammatory cell 

infiltration 
Tubulitis and vasculitis Total 

score 
0 No inflammatory cell infiltration No evidence of tubulitis or  

endothelitis 
0 

1 Mild, variable amounts (but 
often >25%) of the parenchyma 
contain interstitial infiltrates of 
small and large (activated) 
lymphocytes, monocytes, and 
plasma cells 

Tubulitis without evidence of 
endothelitis 

2 

2 Severe, large amounts of the 
parenchyma contain interstitial 
infiltrates 

Endothelitis of small or, more often, 
large arteries with or without the 
tubulitis 

4 

Brain9, 10 Score Vessels Brain parenchyma Total 
score 

0 Normal Normal 0 
1 Vasculitis with lymphocytic 

infiltrations in subendothelium 
and blood vessel wall  

Mild brain edema 2 

2 Vasculitis with lymphocytic 
infiltrations in perivascular areas 

Brain edema and hematoma 4 

3 Affected vessels had hyaline 
changes and fibrosis, and partial 
lumen occlusions with organized 
thrombotic material  

Parenchymal ischemia and 
sporadic focal demyelination and 
microglia reaction. 

6 

4 Aneurysm formation  Parenchymal hemorrhage and mild 
atrophy 

8 
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Required If	  Available Optional

☐ Essential	  donor	  info

☐ Source	  of	  cell	  material

☐ Collection	  methodology

☐ Anti-‐coagulant,	  if	  available

☐ Transportation/storage	  conditions	  for	  unprocessed	  samples,	  if	  available

☐ Cell	  processing	  methodology

☐
Median	  time	  and	  ranges	  from	  sample	  collection	  until	  end	  of	  cell	  
processing,	  if	  available

☐ Cut-‐offs,	  if	  used

☐ Fresh	  or	  cryopreserved

If	  cryopreserved

☐ Devices	  used

☐ Freezing	  process

☐ 	  	  	  	  Medium	  used	  for	  freezing

☐
Median	  time	  and	  temperature	  for	  each	  transportation	  and	  storage	  step,	  
if	  available

☐ Cut-‐offs,	  if	  used

☐ Median	  cell	  yield	  and	  viability	  (when	  available)

☐ Before	  freezing

☐ After	  thawing

☐ After	  overnight	  resting

☐ Cut-‐offs,	  if	  used

☐ Cell	  counting	  methodology

☐ Additional	  assessments

Module	  1	  -‐	  Sample

Module	  1A	  -‐	  Donor

Module	  1B	  -‐	  Source

Module	  1D	  -‐	  Cell	  Counting

Module	  1C	  -‐	  Cryopreservation	  and	  Storage

NA

NA = Donor samples were not employed in T cell assays. Rather, this paper explored CAR 
engineered mouse T cells. Therefore, several sections do not apply. Relevant sections have 
been completed.

X
X

X

X

X

NA

NA
NA
NA



Required If	  Available Optional

☐ Medium/(serum)	  details

☐ Pre-‐testing	  info

☐ Treatment	  procedures	  of	  cells	  prior	  to	  assay,	  if	  applicable

☐ Sufficient	  assay	  details

☐ Internal	  assay	  controls

☐ Acceptance	  criteria,	  if	  available

☐ External	  reference	  samples,	  if	  used

☐ Assay	  acceptance	  criteria,	  if	  available

Required If	  Available Optional

☐ Equipment	  and	  software	  version

☐ Basic	  equipment	  settings,	  if	  available

☐
Detailed	  gating	  strategy	  or	  strategy	  for	  establishing	  spot	  detection	  
parameters

☐ Representative	  data	  set

☐
Mean,median,	  ranges	  of	  event	  counts	  for	  relevant	  populations,	  if	  
available

☐ Unusual	  strategies	  explained

☐ Review	  of	  raw	  data

Module	  3	  -‐	  Data	  Acquisition

Module	  3A	  -‐	  Equipment	  and	  Software

Module	  3B	  -‐	  Acquisition	  Strategy	  and	  Gating

Module	  2A	  -‐	  Medium/Serum

Module	  2B	  -‐	  Assay

Module	  2	  -‐	  Assay

Module	  2C	  -‐	  Controls

X
X

X

X

X

X

X

X



Required If	  Available Optional

☐ Background	  and	  Ag-‐specific	  reactivity	  levels,	  if	  available

☐ Cut-‐off	  specifications	  and	  #	  of	  tests	  out-‐of-‐specification,	  if	  available

☐ Accessibility	  of	  raw	  data	  addressed?

☐
Definition	  of	  positive	  reactivity	  (above	  background)	  including	  tests	  
applied

☐
Parameters,	  software	  and	  version	  used	  for	  response	  determination,	  if	  
applicable

☐ Response	  definition	  predefined	  or	  post-‐hoc?

☐ Definition	  of	  response	  induced	  by	  treatment,	  if	  applicable

☐ Any	  data	  excluded	  and	  why,	  if	  applicable?

☐ Why	  test	  was	  used

Required If	  Available Optional

☐ Guidance	  of	  lab	  operations

☐ Laboratory	  accreditions	  and	  certifications,	  if	  available

☐ Details	  on	  audits

☐ Status	  of	  protocols

☐ Status	  of	  assays

☐ Specific	  performance	  criteria

Module	  5C	  -‐	  Qualification/Validation

Module	  4	  -‐	  Results

Module	  4A	  -‐	  Raw	  Data

Module	  4B	  -‐	  Response	  Determination

Module	  5

Module	  5A	  -‐	  General	  Lab	  Operation

Module	  5B	  -‐	  Standardization

X

X

X

X

NA

NA
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