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a b s t r a c t

The orderMononegavirales includes five families: Bornaviridae, Filoviridae, Nyamaviridae, Paramyxoviridae, and
Rhabdoviridae. The genome of these viruses is one molecule of negative-sense single strand RNA coding for
five to ten genes in a conserved order. The RNA is not infectious until packaged by the nucleocapsid protein
and transcribed by the polymerase and co-factors. Reverse genetics approaches have answered fundamental
questions about the biology of Mononegavirales. The lack of icosahedral symmetry and modular organization
in the genome of these viruses has facilitated engineering of viruses expressing fluorescent proteins, and
these fluorescent proteins have provided important insights about the molecular and cellular basis of tissue
tropism and pathogenesis. Studies have assessed the relevance for virulence of different receptors and the
interactions with cellular proteins governing the innate immune responses. Research has also analyzed the
mechanisms of attenuation. Based on these findings, ongoing clinical trials are exploring new live attenuated
vaccines and the use of viruses re-engineered as cancer therapeutics.
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Mononegavirales: non-segmented negative strand RNA viruses

Non-segmented negative strand RNA viruses (NS-NSVs) are a
large group of different viruses found both in animals and plants.

NS-NSVs include several major human, animal, and plant pathogens
that have a great impact on human health and are commercially
very important. The order of Mononegavirales contains 5 families:
Bornaviridae, Filoviridae, Nyamiviridae, Paramyxoviridae, and Rhab-
doviridae (Taxonomy, 2013) (Fig. 1).

The Bornaviridae family includes only one genus Bornavirus. Borna
disease virus (BDV) causes severe neurobehavioral changes in horses
and sheep; there are conflicting reports about BDV infecting humans
and causing disease (for review (Kinnunen et al., 2013)). Interestingly,
BDV replicates in the nucleus of the infected cell. Nevertheless, BDV
has the typical genome organization of a NS-NSV (Fig. 2) with a
nucleoprotein (N), polymerase cofactor (X/P), matrix protein (M),
surface glycoprotein (G) and polymerase (L).

The family Filoviridae was named after the Latin noun filum
meaning “thread” because of their long “thread-like” virions of up
to 800–1200 nm. The genome organization generally follows the
pattern of other NS-NSV wherein VP35 is the polymerase cofactor
and VP40 is the matrix protein (Fig. 2). Ebola virus (EBOV) recently
caused a large outbreak in West Africa with thousands of deaths
and worldwide repercussions. The Filoviridae family was reclassified
in 2014 into three genera (Ebolavirus, Marburgvirus, and Cuevavirus)
with the former two of them being most important for human
disease (Kuhn et al., 2014).

The new family Nyamiviridae (Taxonomy, 2013) contains the
single genus Nyaviruswith the two species Nyamanini virus (NYMV)
and Midway virus, which were isolated from insects and birds
(Mihindukulasuriya et al., 2009). Like BDV, NYMV replicates in the
nucleus (Herrel et al., 2012).

The Paramyxoviridae family is large and divided into two sub-
families, Paramyxovirinae and Pneumovirinae. The latter includes two
genera, Pneumovirus, which includes human Respiratory syncytial
virus (RSV), an important human pathogen discussed in more detail
below. The other genus is Metapneumovirus, which includes the
important pathogen humanMetapneumovirus (hMPV). Interestingly,
hMPV and RSV do cause a very similar disease. hMPV was isolated
for the first time in 2001, but nevertheless might be the second most

Fig. 1. Phylogeny of the genera within the order Mononegavirales. Genera for
which reverse genetics systems have been established for at least one species are
highlighted. The phylogenetic tree was generated with phyloT (Letunic and Bork,
2007, 2011). Abbreviations: B01 – Bornavirus; F01 – Cuevavirus; F02 – Ebolavirus;
F03 – Marburgvirus; N01 – Nyavirus; P01 – Aquaparamyxovirus; P02 – Avulavirus;
P03 – Ferlavirus; P04 – Henipavirus; P05 – Morbillivirus; P06 – Respirovirus; P07 –

Rubulavirus; P08 – Metapneumovirus; P09 – Pneumovirus; R01 – Cytorhabdovirus;
R02 – Ephemerovirus; R03 – Lyssavirus; R04 – Novirhabdovirus; R05 – Nucleor-
habdovirus; R06 – Perhabdovirus; R07 – Sigmavirus; R08 – Sprivivirus; R09 –

Tibrovirus; R10 – Tupavirus; R11 – Vesiculovirus.

Fig. 2. General genome organization of Mononegaviruses. Size of the genomes and individual genes is proportional to their length.
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important virus for lower respiratory tract infection in humans after
RSV (for review (Falsey, 2008)). An unusual feature for Pneumovirinae
compared to other NS-NSVs is that they encode two nonstructural
proteins (NS1 and NS2), which are located upstream of the nucleo-
protein within the genome (Fig. 2) and interfere with the host innate
immunity.

The other subfamily, Paramyxovirinae is divided into seven genera,
two of them including several viruses of great importance for human
and animal health. Typically, viruses of the Paramyxovirinae subfamily
encode six or seven genes. Viruses are divided into different genera
depending on two characteristics: (1) expression of one or two
additional proteins (called V and C) from their P gene; and (2) neur-
aminidase activity of the attachment glycoprotein (hemagglutinin, H
or hemagglutinin-neuraminidase, HN) (Lamb and Parks, 2013). A
fairly newly discovered fish-infecting paramyxovirus, Atlantic salmon
paramyxovirus, established the new genus Aquaparamyxovirus. Avian
paramyxoviruses, among them the species prototype Newcastle
disease virus (NDV) form the genus Avulavirus. Fer-de-Lance para-
myxovirus is a reptile virus and represents the genus Ferlavirus. The
two viruses in the Henipavirus genus, Hendra (HeV) and Nipah virus
(NiV) are emerging infectious pathogens naturally harbored by bats,
but highly pathogenic when transmitted to human or other mam-
mals, causing respiratory or neurological diseases. Distinct from other
viruses in the subfamily, the attachment protein is not called H, but
simply glycoprotein (G). The genus Morbillivirus consists of closely
related, but highly host-specific viruses including Measles virus
(MeV), Canine distemper virus (CDV), and Rinderpest virus (RPV).
Although infecting epithelial tissues of their host, a common feature
of these viruses is lymphotropism and virus-induced immunosup-
pression. The attachment protein H does not have neuraminidase
activity. The genus Respirovirus includes several parainfluenza viruses,
which cause flu-like respiratory diseases. The murine prototype,
Sendai virus (SeV), is among the most important model paramyx-
oviruses. Parainfluenza viruses (PIVs) type 1 and 3 are human
pathogens, which are similarly problematic as RSV and hMPV from

the Pneumovirinae. The seventh genus, Rubulavirus consists of a
second group of parainfluenza viruses, among them the important
human pathogens Mumps virus (MuV), human Parainfluenza viruses
type 2 and 4, and Parainfluenza virus type 5, formerly known as
Simian virus 5 (SV5). Although pathogenesis of these viruses is similar
to respiroviruses, they are grouped into a distinct genus, because they
do not express a C protein and encode a small hydrophobic mem-
brane protein (SH).

The Rhaboviridae family contains both animal and plant viruses,
which are divided into 11 genera with 71 species. The best know
species infecting human and animals is Rabies virus (RABV) of the
Lyssavirus genus, which contains 13 other species causing a rabies-
like disease in most mammals. Whereas classical RABV does cause
99% of human cases, the other species are important because the
current RABV does not protect against several of them (Evans et al.,
2012). The other well-known member is vesicular stomatitis virus
(VSV), which is “the model” rhabdovirus because it has been widely
used to study NS-NSV molecular virology and biochemistry. Both
Lyssavirus and Vesiculovirus have only the five genes defining the
basic NS-NSV genome organization (Fig. 2).

NS-NSVs have very specific or broad host tropism, depending on
the virus. For example, RABV has a wide host range and can infect
most mammals. On the other hand, MeV infects only certain
primates. While NS-NSVs have different host(s) and tissue tropism
and come in different shapes and sizes, their genomes are similarly
organized and they have, with a few interesting variations, a similar
replication process.

Replication of NS-NSVs

The genome of all NSVs is a single-stranded RNA of negative
polarity, which can be one molecule (NS-NSV) or multiple segments
for segmented negative-strand RNA viruses (S-NSV). Fig. 3 shows the
replication cycle of RABV. The mode of replication and specific

Fig. 3. Transcription and replication of a NNSV shown for RABV. (A) The encapsidated negative-strand RNA (yellow) serves as a template for the polymerase complex.
Transcription starts with a short uncapped leader RNA (leRNA) from the 30 end of the genomic RNA; this is followed by the transcription of 50 capped and polyadenylated
mRNAs, which encode the viral proteins (green). The polymerase complex stops at a signal sequence, ignores the intergenic region (IGR) and restarts transcription at the
transcription start signal sequence. Subsequent attempts at transcription by the polymerase complex are not always successful; therefore, attenuation of transcription occurs
in the direction of 30–50 (transcription gradient). (B) During replication, the polymerase complex ignores the transcription start/stop signals within the RABV genome
(yellow), rendering a full-length antigenomic RNA (green), which is also encapsidated. The antigenomic RNA is encapsidated into the N protein along with the genomic RNA.
The synthesized antigenome serves then as a template for the synthesis of additional copies of genomic RNA (yellow). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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elements required for replication and transcription are conserved for
all NSVs. The ribonucleoprotein (RNP) is the functional template for
replication and transcription. As the name suggests, RNP is RNA
associated with a protein. Both the minus-strand genome and the
plus-strand anti-genome are encapsidated into the nucleoprotein (N
or NP); the naked RNA is not infectious (Conzelmann, 2004). Encapsi-
dation follows a common mechanism for all NSV (Green et al., 2014).
This is an important feature of NSVs because such a RNP-template
must be formed when a new virus is created de novo from cDNA. This
encapsidation step has been a major challenge to the generation of

NSVs from cDNA (see below). In order to begin replication, NSV need a
complex composed of the viral polymerase (L), the catalytic enzyme,
and the non-catalytic phospoprotein (P), in addition to the RNP
(Conzelmann, 2004).

NS-NSV transcription begins when the viral polymerase recognizes
the 30 end of the genome and transcribes a short leader RNA followed
by the viral genes. These are flanked by conserved sequences that
signal to the polymerase complex to start or stop (Fig. 3) (Whelan
et al., 2004). Transcription is not always successfully reinitiated after
each stop sequence; this lack of polymerase reinitiation results in a

Table 1
Rescue systems currently developed for Mononegavirales. References of the first published rescues of the respective species. N/A: No rescue system available as stated in the
cited reference. ——: No rescue system found in the literature.

Family Subfamily Genus Species Reverse
Genetics
established

Reference

Bornaviridae B01 – Bornavirus Borna disease virus 2005 Schneider et al. (2005)

Filoviridae F01 – Cuevavirus Lloviu cuevavirus ——

F02 – Ebolavirus Zaire ebolavirus 2001 Volchkov et al. (2001)
F03 – Marburgvirus Marburg marburgvirus 2006 Enterlein et al. (2006)

Nyamaviridae N01 – Nyavirus Nyamanini nyavirus 2013 Herrel et al. (2013)

Paramyxoviridae Paramyxovirinae P01 – Aquaparamyxovirus Atlantic salmon
paramyxovirus

——

P02 – Avulavirus Newcastle disease virus 1999 Romer-Oberdorfer et al.
(1999)

P03 – Ferlavirus Fer-de-Lance
paramyxovirus

——

P04 – Henipavirus Hendra virus 2013 Marsh et al. (2013)
Nipah virus 2006 Yoneda et al. (2006)

P05 – Morbillivirus Canine distemper virus 2000 Gassen et al. (2000)
Measles virus 1995 Radecke et al. (1995)
Rinderpest virus 1997 Baron and Barrett

(1997)
P06 – Respirovirus Human parainfluenza

virus 1
2002 Newman et al. (2002)

Human parainfluenza
virus 3

1997 Hoffman and Banerjee
(1997)

Bovine parainfluenza
virus 3

2000 Schmidt et al. (2000)

Sendai virus 1995 Garcin et al. (1995)
P07 – Rubulavirus Human parainfluenza

virus 2
2001 Kawano et al. (2001)

Mumps virus 2000 Clarke et al. (2000)
Parainfluenza virus 5 1997 He et al. (1997)

Pneumovirinae P08 – Metapneumovirus Human metapneumovirus 2004 Biacchesi et al. (2004)
P09 – Pneumovirus Human respiratory

syncytial virus
1995 Collins et al. (1995)

Bovine respiratory
syncytial virus

1999 Buchholz et al. (1999)

Rhabdoviridae R01 – Cytorhabdovirus Lettuce necrotic yellows
virus

N/A Kormelink et al. (2011)

R02 – Ephemerovirus Bovine ephemeral fever
virus

——

R03 – Lyssavirus Rabies virus 1994 Schnell et al. (1994)
R04 – Novirhabdovirus Infectious hematopoietic

necrosis virus
2000 Biacchesi et al. (2000)

Viral hemorrhagic
septicemia virus

2010 Ammayappan et al.
(2011)

Snakehead rhabdovirus 2000 Johnson et al. (2000)
R05 – Nucleorhabdovirus Potato yellow dwarf virus N/A Kormelink et al. (2011)
R06 – Perhabdovirus Perch rhabdovirus ——

R07 – Sigmavirus Drosophila melanogaster
sigmavirus

——

R08 – Sprivivirus Spring viraemia of carp
virus

——

R09 – Tibrovirus Tibrogargan virus ——

R10 – Tupavirus Tupaia virus ——

R11 – Vesiculovirus Vesicular stomatitis
Indiana virus

1995 Lawson et al. (1995),
Whelan et al. (1995)
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30–50 transcription gradient. For example, the VSV transcript levels are
reduced by about 20% at each gene junction (Iverson and Rose, 1981),
and similar observations have been reported for MeV and other NS-
NSVs (Cattaneo et al., 1987).

The polymerase complex may switch to replication mode as
function of the amount of N and/or P protein available. In replica-
tion mode, the transcription start-and-stop signals are ignored and
full-length NP-encapsidated anti-genomic RNA is synthesized (Barik
and Banerjee, 1992; Gupta and Banerjee, 1997). The antigenomic
RNP serves as template for the production of more genomic RNPs.
The matrix (M) protein organizes the assembly of these genomic
RNPs and the surface glycoprotein(s) and controls transcription
(Whelan et al., 2004).

Reverse genetics: how did it all begin?

The foundations for RNA virus reverse genetics were laid in
1978 by the observation that full-length cDNA copies of bacter-
iophage Qbeta RNA cloned into a plasmid form plaques after
transfection of E. coli (Taniguchi et al., 1978). Three years later a
similar observation was reported for the eukaryotic Poliovirus
(Racaniello and Baltimore, 1981). While the subsequent develop-
ment of reverse genetics for many more positive strand RNA
viruses was relatively straightforward, the complex mechanisms
of NSV replication initially represented a difficult barrier to over-
come. However, in 1989 the Palese group showed that a marker
gene (chloramphenicol acetyl transferase, CAT) can be temporarily
expressed by influenza virus (Luytjes et al., 1989). Luytjes et al.
inserted the CAT open reading between the genomic 30 and 50 ends
of a synthetic viral RNA, utilized purified NP and PBA, PB1, and PB2
protein to create a synthetic RNP genome segment de novo,
transfected it, and detected CAT activity after infection with
standard virus.

When attempts to recover infectious virus by encapsidating
NS-NSV genomes in vitro and transferring them into virus-infected
cells failed, focus shifted to short artificial RNA derived from the 30

and 50 end of the genome containing a marker gene (CAT) or to
short, naturally-occurring genomes of defective interfering (DI)
viral particles. Park and Krystal established a system to create a
synthetic DI-RNA for SeV. They fused the T7 RNA polymerase
promoter 50 to the viral genome and linearized the plasmid to
generate the 30 genome end (Park et al., 1991). After in vitro
transcription, this synthetic RNA was transfected into cells, and
CAT activity was detected after helper virus infection. Collins and
colleagues reported the recovery of a RSV-derived DI with almost
50% of the genome length (Collins et al., 1993).

In 1992, the Wertz group utilized a hepatitis delta virus (HDV)-
derived ribozyme to create an exact 30 end of the RNA instead of
just linearizing the plasmid encoding the genomic RNA. In combi-
nation with the expression of the viral replication proteins through
the vaccinia virus T7-RNA polymerase expression system (Fuerst et
al., 1987), this resulted in efficient and reproducible recovery of the
synthetic RNP (Pattnaik et al., 1992). Analogously, the Conzelmann
group used a similar system to recover several artificial RABV
genomes expressing two different marker genes (Conzelmann and
Schnell, 1994). Importantly, recovery efficiency of these synthetic
model RNAs was inversely proportional to genome size
(Conzelmann and Schnell, 1994).

A positive approach for the recovery of a negative sense RNA
virus

The new approach that allowed the first successful recovery of a
NS-NSV (Schnell et al., 1994) was based on the use of anti-genomic

(plus strand) rather than the genomic (minus strand) RNA that was
previously used for experiments based on synthetic DI genomes. Use
of plus-strand RNA appeared counterintuitive, but Schnell et al. were
concerned that simultaneous expression of naked negative sense
genomic RNA and positive strand mRNAs would result in hybridiza-
tion and generation of double strand RNA, inducing interferon while
also reducing successful encapsidation. Indeed, RABV was rescued
from a positive strand cDNA (antigenome), but not when the negative
strand genome was transcribed (Schnell et al., 1994).

The Rose (Lawson et al., 1995) and Wertz (Whelan et al., 1995)
laboratories then used variants of the positive approach to
successfully recover genetically marked recombinant VSV and
several other groups recovered recombinant viruses from the
families Paramyxoviridae and Filoviridae using similar or slightly
modified systems as for RABV (Table 1 and references therein).
Several groups attempted virus recovery using both the anti-
genomic and the genomic RNA, but only the anti-genomic, positive
strand RNA worked. There has been one exception: the Nagai
group recovered recombinant SeV by expression of the negative
strand genome. However, rescue efficiency from anti-genomic
RNA was about 100-fold lower than from genomic RNA (Kato
et al., 1996).

Alternative recovery systems

Stable cell lines expressing the viral replication proteins have
been used as alternative virus recovery systems. The Billeter group
recovered the first paramyxovirus in 1995 by using a cell line
stably expressing MeV N, P and T7 RNA polymerase (Radecke et al.,
1995). After transfection of a plasmid expressing the MeV anti-
genome and a plasmid expressing MeV L, infectious genetically
marked MeV was rescued with high efficiency (Radecke et al.,
1995). Buchholz et al. generated a BHK-derived cell line stably
expressing T7 RNA polymerase and recovered a slow, replication-
impaired BRSV mutant (Buchholz et al., 1999). This indicated that
the system was very efficient and remediated the cytolytic and
inhibitory effects of vaccina virus. A key parameter for efficient
virus rescue is the synthesis of genomes with correct 50 and 30

ends. T7-dependent transcription of viral antigenomes added
three non-virus G bases. While these bases were removed during
replication, their presence interfered with efficient RNP formation.
To address this problem, Le Mercier et al. introduced a hammer-
head ribozyme (HamRz) after the GGG of the T7 promoter (Le
Mercier et al., 2002), which created an exact 50 end, improving
rescue efficiency. McGettigan et al. introduced the sequence of
HamRz into the RABV vaccine vector SPBN, which allowed recov-
ery of a RABV-based vaccine construct (McGettigan et al., 2003).
Analogously, for HeV and NiV, the introduction of a HamRz in front
the 50 antigenome greatly improved recovery efficiency (Yun et al.,
2014). Moreover, use of a more efficient HDV ribozyme to cleave
the correct 30 genome end improved the recovery frequency of
RABV 100-fold (Ghanem et al., 2012).

In summary, the recovery of NS-NSVs has come a long way. The
recovery frequency for RABV was initially �1 focus forming unit (ffu)
for 107 cell in the vaccinia-based system (Schnell et al., 1994). It
improved by a factor of 10 on T7 cells when the 30 ends were cleaved
with a core HDV ribozyme. Precise and efficient cleavage of both
ends yielded 1 ffu for 104 cells (Ghanem et al., 2012). However, there
is room for improvement. If efficiency of the recovery improved, it
would become possible to obtain even viruses with certain classes of
lethal mutations, e.g. virus particles could be recovered but would
not be able to reinfect or replicate. However for such approaches to
become possible, another new key finding, such as the use of the
antigenome and the creation of the exact 30 and 50 end of the
genome, will be required.
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Better understanding of the life cycle of NS-NSV by reverse
genetics

While Mononegavirales, especially VSV, have contributed greatly to
our understanding of molecular and cell biology, their life cycle in
natural hosts is less well understood. For example, before the advent of
reverse genetics, very little was known about where viruses replicate
immediately after contagion, which made it impossible to understand
the series of events leading to disease. One of the motivations for the
development of reverse genetics was to apply new experimental
approaches to study tissue tropism and pathogenesis.

Fluorescent reporters expressed by recombinant viruses now
provide a simple way to follow their spread through the host organism
and to identify target tissues and cell types infected. RABV is now a
widely used tool to study neuroanatomy and neuronal connection.
Whereas such study was initially performed with naturally-occurring
RABV strains (Kelly and Strick, 2000), reverse genetics opened new
possibilities utilizing vector with marker and modified tropism
(Wickersham et al., 2013).

For pathogenicity studies, we will focus here on the morbilliviruses
MeV and CDV. How these viruses cause immunosuppression has been
a key question (Schneider-Schaulies and Schneider-Schaulies, 2009).
Until recently textbooks suggested that morbilliviruses replicated in
the epithelia in the airways immediately after contagion, and that the
infection eventually somehow caused immunosuppression. But in
2000, researchers identified a protein expressed on the surface of
immune cells, the signaling lymphocyte activation molecule (SLAM),
as the primary receptor for MeV (Tatsuo et al., 2000). One year later it
was observed that MeV entered well-differentiated primary airways
epithelia much more efficiently from the basolateral side than from
the apical side (Sinn et al., 2002). Taken together, these two observa-
tions suggested that MeV and the other morbilliviruses may take
advantage of SLAM-expressing alveolar macrophages to traverse the
respiratory epithelium immediately after contagion, allowing rapid
spread in lymphatic organs and causing immunosuppression.

This hypothesis was tested in the ferret model with a new CDV
expressing the green fluorescent protein (GFP). Indeed it was docu-
mented that this virus replicated briskly in local lymph nodes and

primary lymphatic tissues before spreading to airways epithelia (von
Messling et al., 2004). This sequence of events was confirmed through
the infection of macaques with GFP-expressing MeV able to enter
cells through either SLAM or through the epithelial receptor nectin-4
(Lemon et al., 2011; Leonard et al., 2010, 2008; Muhlebach et al.,
2011). Thus immunosuppression occurs at least in part due to rapid,
very efficient virus replication in primary and secondary immune
organs. These studies, which have fundamentally altered our under-
standing of morbillivirus pathogenesis, have been made possible by
reverse genetics techniques.

Virulence: innate immunity control proteins

Viruses must control the innate immune response to replicate
efficiently in a host. TheMononegavirales do this by targeting both the
interferon (IFN) induction and IFN signaling pathways, as discussed in
recent reviews (Gerlier and Lyles, 2011; Goodbourn and Randall,
2009; Parks and Alexander-Miller, 2013; Ramachandran and Horvath,
2009; Rieder and Conzelmann, 2009; Schneider et al., 2014).

Analysis of the mechanisms by which individual viruses counteract
the host innate immune response has progressed rapidly in recent
years. It has become evident that even viruses with small genomes
counteract the interferon system by interacting with several of its
components. For example, viruses of the Paramyxovirinae subfamily
express either one or both types of accessory proteins named V and C.
These proteins are dispensable for virus spread in certain transformed
cell lines. However, their deletion leads to strong attenuation in
natural hosts, where infection induces adaptive immune responses
of similar magnitude as those of wild type infections (Devaux et al.,
2008; Kato et al., 1997; von Messling et al., 2006).

The V proteins of paramyxoviruses inhibit innate immune
responses by binding to the cytoplasmic double-stranded RNA
(dsRNA)-receptor melanoma differentiation-associated protein 5
(mda5), as well as the signal transducers and activators of tran-
scription 1 and 2 (STAT1, STAT2) (Parks and Alexander-Miller, 2013).
Mapping of the interaction sites of each of these cellular proteins
on the V protein of Morbilliviruses has allowed a new approach

Table 2
Selected Mononegavirales in clinical trials. Clinical trials can be found at https://clinicaltrials.gov/.

Virus strain Purpose Clinical trials

Respiratory syncytial virus Live-attenuated vaccine NCT01893554: Safety and immune response in infants and children (Phase I)
RSV ΔNS2 Δ1313 I1314L

Respiratory syncytial virus Live-attenuated vaccine NCT01852266: Safety and immune response in RSV-seronegative infants and children (Phase I)
RSV cps2

Measles virus Vectored vaccine NCT01320176: Safety and dose-response of MeV vector expressing
HIV-1 clade B antigen in healthy adults (Phase I)MV1-F4

Vesicular stomatitis virus Vectored vaccine NCT01438606: Safety and immunogenicity in healthy, HIV-1-uninfected adults (Phase I)
VSV-Indiana HIV gag

Vesicular stomatitis virus Vectored vaccine NCT02280408: Safety and immunogenicity of prime-boost in healthy adults (Phase I)
NCT02283099: Safety, Tolerability and Immunogenicity of a Single Ascending Dose (Phase I)
NCT02287480: Safety and immunogenicity in healthy adults (Phase I)
NCT02296983: Safety and immunogenicity in healthy adults in Kilifi, Kenya (Phase I)

VSVΔG-ZEBOV (BPSC1001)

NCT02314923: Safety and immunogenicity in healthy adults (Phase I)
NCT02344407: Safety and immunogenicity in healthy adults in Monrovia,
Liberia; comparison with chimpanzee adenoviral vector ChAd3-EBO Z (Phase II)

Measles virus Oncolysis: Tracking NCT00408590: Ovarian cancer (Phase I) (Galanis et al., 2010)
MV-CEA NCT00390299: Recurrent glioblastoma multiforme (Phase I)

Measles virus Oncolysis: Tracking and Arming NCT00450814: Recurrent or refractory multiple myeloma (Phase II) (Russell et al., 2014)
NCT02068794: Recurrent ovarian cancer cell carriers (Phase II)MV-NIS
NCT01503177: Malignant pleural mesothelioma (Phase I)
NCT01846091: Recurrent or metastatic squamous cell carcinoma of the head and neck (Phase I)

Vesicular stomatitis virus Oncolysis: Selective Dis-Arming NCT01628640: Hepatocellular carcinoma (Phase I)
VSV-IFNβ
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to the assessment of the relevance of individual viral proteins for
the interactions with specific hosts. A recombinant MeV that was
unable to antagonize STAT1 function was generated, and its
virulence was analyzed in rhesus monkeys (Devaux et al., 2011).
This recombinant virus could not control inflammation and was
attenuated in rhesus monkeys. On the other hand, when essentially
the same study based on STAT1 interactions abrogation was
performed with CDV, it resulted in a virus that had minimal effects
on CDV pathogenesis in ferrets (Svitek et al., 2014). This finding
indicated STAT1 inhibition is insufficient to disrupt the innate
immune response in vivo. On the other hand, in this virus-host
pair, the mda5 and STAT2 interactions played an essential role in
pathogenesis, and their ablation completely attenuated the virus
(Svitek et al., 2014). Thus, even if reverse genetics is allowing a
systematic approach to the study of the relevance of different innate
immunity interactions for virulence, the results are not always
predictable. Nevertheless, this knowledge is essential for the
rational design of attenuated vaccines.

Developing new vaccines against NS-NSV: rational attenuation

The ability to recover NS-NSVs opened new areas of research.
First of all, researchers were now able to add specific mutations
or exchange genes to modify the viral genome, and they were
able to analyze how such modifications affect the viral life cycle
and pathogenicity of the respective virus. Moreover, such
manipulation allowed researchers to modify the virus in such
a way that new “designer vaccines” could be generated. Addi-
tionally, researchers started to focus on using NS-NSVs as
vectors for immunization against infectious diseases by expres-
sing foreign antigens (for review see (Bukreyev et al., 2006)).
Both of these areas, namely the generation of novel and
improved NS-NSV vaccines as well the use of NS-NSVs as
vaccines for other pathogens grew incredibly fast in number
during the past few years. As a result, we will not be able to give
a complete overview for all of the approaches, but rather we
will give some examples of such approaches.

While the MeV live attenuated vaccine, now in use for more
than 50 years is very safe and efficacious (Griffin and Pan, 2009;
Katz, 2009), long standing attempts to develop vaccines against
other Mononegavirales have been less successful. In particular, RSV
is notable for a historic vaccine failure in the 1960s involving a
formalin-inactivated vaccine that primed for enhanced disease in
RSV naïve recipients. Live vaccines candidates have been shown to
be free from this complication (Collins et al., 2013). However, early
efforts to develop vaccines through the classic methods of serial
cold-passage yielded vaccine candidates that either were not
attenuated in young infants or had unacceptable adverse effects
(Karron et al., 2013).

A reverse genetics system for producing infectious RSV
developed in 1995 (Collins et al., 1995) was the basis for the
production of all the current attenuated vaccine candidates.
Reverse genetics allowed first, to directly identify and charac-
terize attenuating mutations in existing attenuated strains, and
second, to produce novel mutations based on functional knowl-
edge. Attenuating mutations can be combined to produce live-
attenuated candidate vaccines with a range of phenotypes and
properties. However, the resulting levels of attenuation cannot
be predicted precisely (Karron et al., 2013, 2005). The best
candidate for a live-attenuated RSV vaccine (Phase I clinical
trial NCT01893554, Table 2) so far combines the described
attenuation through temperature-sensitive mutations with
additional deletion of the NS2 gene (Luongo et al., 2013), which
is a major IFN antagonist of RSV (Bossert et al., 2003; Lo et al.,
2005; Spann et al., 2005).

A different approach currently used to generate a live-
attenuated vaccine for RSV is codon-pair de-optimization of the
genome sequence (Le Nouen et al., 2014). Existing frequent codons
in open reading frames are replaced by alternative rare codons,
resulting in a highly temperature sensitive mutant RSV (Le Nouen
et al., 2014). More targeted codon de-optimization of both NS genes
resulted in a genetically stable virus that was attenuated and
induced high levels of neutralizing antibodies in a mouse model
(Meng et al., 2014).

EBOV andMARV of the Filoviridae family target the innate immune
response through multiple mechanisms. The major IFN antagonist is
the phosphoprotein VP35, which sequesters dsRNA (Cardenas et al.,
2006) and blocks the phosphorylation of IRF3 (Basler et al., 2003).
Recombinant mouse-adapted EBOV expressing VP35 with a single
point mutation making it unable to block IRF3 activation is highly
attenuated in a mouse model (Hartman et al., 2008) and therefore
might represent a good candidate for vaccine development. The IFN
signaling pathway is blocked by the matrix protein VP40 of MARV,
which inhibits phosphorylation of STAT1/STAT2 (Valmas et al., 2010),
or by the minor matrix protein VP24 of EBOV, which blocks karyo-
pherin-α-mediated nuclear import of STAT1/STAT2 (Reid et al., 2006).
How these findings can be implicated in the development of highly
attenuated vaccines needs to be determined.

In vivo attenuation of the neurotropic RABV can be achieved by
targeting its IFN antagonist, the P protein (Rieder and Conzelmann,
2009). It inhibits the activation of IRF3 (Brzozka et al., 2005) and
STATs (Brzozka et al., 2006; Vidy et al., 2005). Since P is an essential
cofactor of the viral polymerase, it cannot be deleted from the virus.
However, P expression can be minimized by moving the gene behind
the L gene (Brzozka et al., 2005) or by introducing internal ribosome
entry site (IRES) elements from positive strand RNA viruses of the
Picornaviridae family (Marschalek et al., 2009). The resulting viruses
have proven high attenuation in mice (Marschalek et al., 2009; Rieder
et al., 2011), but whether they protect against lethal challenge still
needs to be tested. RABVs expressing P that is unable to inhibit IRF3
activation are attenuated in wt mice, but not in IFNARko mice (Rieder
et al., 2011). One of these viruses tested as a vaccine candidate
successfully protected foxes from RABV challenge, although neutraliz-
ing antibody titers were lower than with standard vaccine; the same
virus failed to induce sufficient levels of neutralizing antibodies and
protection in skunks (Vos et al., 2011). RABV expressing a mutant
form of P (W265G/M287V) unable to interact with STAT1 was
completely attenuated in ddY mice (Wiltzer et al., 2014). When
infected intracranially with this virus, mice only developed mild
symptoms and recovered completely.

The currently used VSV for reverse genetics is already attenu-
ated compared to wild-type VSV even though the mechanism has
not been identified yet (Publicover et al., 2004). One of the earliest
rational approaches to attenuated VSV was the reduction of viral
growth by the deletion of the cytoplasmic domain of the VSV G
from 29 amino acids (aa) to 9 aa or 1 aa, respectively (Publicover
et al., 2004; Roberts et al., 1998).

Another approach to VSV attenuation was by rearrangement of the
viral genes. Because transcription for NS-NSVs is progressively reduced
from 30 to 50 (see above), the change of the gene order alters the
protein expression levels and therefore reduces viral replication
(Wertz et al., 1998). As expected, VSV modified by gene rearrangement
were greatly attenuated in vitro and in vivo (Wertz et al., 1998).

The ability to create new vaccines by targeted attenuating changes
of the viral genome was also shown very early on for RABV. After
intensive screening for pathogenicity markers, the Dietzschold and
Schnell laboratories showed that the RABV G protein as well as the
level of replication were major factors for RABV pathogenicity (Faber
et al., 2007, 2004; McKenna et al., 2004; Pulmanausahakul et al.,
2008). Based on these studies, candidate new RABV vaccines were
generated by introducing attenuating mutations into the G protein in
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RABV vaccine strains (Gomme et al., 2011). However there are still
major concerns about using live vaccines in humans, and this is
especially true for RABV. So other approaches, such as gene deletion,
have been used to create replication-deficient (Cenna et al., 2009;
Gomme et al., 2010) and highly replication-impaired RABV vaccines
and vectors (McGettigan et al., 2014).

Novel viral vectors based on NS-NSVs for immunizations
against other pathogens

Vaccines are one of the greatest achievements in medicine, as they
protect us from infectious diseases caused by natural pathogens. One
to two inoculations of an attenuated pathogen elicit humoral and
cellular immune responses. Through reverse genetics specific muta-
tions with predictable phenotypes can be introduced into wild type or
attenuated virus strains, and their effects on the viral life cycle and
pathogenicity can be verified. Based on these modifications, new
vectors for immunization against multiple infectious diseases are
being developed (for review see (Bukreyev et al., 2006)).

RABV and VSV were not only the first NS-NSVs recovered from
cDNA, they were also the first NS-NSV to be developed as potential
vectors. In the case of RABV, Mebatsion et al. showed that the CAT
marker gene can be expressed by RABV and is stable over more
than 25 passages (Mebatsion et al., 1996). Similar findings were
made simultaneously for VSV, indicating not only stable expres-
sion of CAT but also that it did not did not affect the viral life cycle.
Moreover Schnell et al. showed that the minimal transcription
start/stop found within the VSV genome was sufficient to express
a foreign gene (Schnell et al., 1996). Research on several other NS-
NSV expressing marker genes followed, and the researchers
showed similar results, particularly the highly stable expression.

Stable foreign gene expression by NS-NSV vectors may seem
surprising considering the high mutation rate of RNA polymerases in
general (for review (Lauring et al., 2013)). However, the helical
nucleocapsids of NS-NSV form open structures that can grow in
length. These open structures do not impose the limitations inherent
in the icosahedral symmetry constraining the cargo volume, and thus
the genome length, of most positive strand viruses. Another source of
genomic instability, genetic recombination, is minimized by the fact
that the genomic RNA of NS-NSV is always encapsidated, rather than
naked as the genome of plus-strand RNA viruses. Indeed, several
studies have indicated that recombination for NS-NSV is a very rare
event, and so far it has only been described for RSV (Collins et al.,
2008; Spann et al., 2003).

Different NS-NSV-based vectors are now used as vaccine vectors
to express protein of other pathogens for immunization. Based on its
ease of use, probably the most utilized vaccine vector is VSV that has
been developed for influenza virus (Roberts et al., 1998), RSV (Kahn
et al., 1999), human papilloma virus (Reuter et al., 2002), and
henipaviruses (Kurup et al., 2014), to just name a few. Most
developed are the VSV vaccine vectors against human immunode-
ficiency virus type 1 (HIV-1) and EBOV.

For HIV-1, studies showed that VSV induces strong immune
responses in mice and in nonhuman primates (NHPs). However, as
with other HIV-1 vaccine approaches, not all animals were protected
when a highly pathogenic challenge virus was used (Ramsburg et al.,
2004). These results were similar to those seen for the RABV-based
vector, where the immune responses were potent in mice (Lawrence
et al., 2013) and NHPs and the SIVmac251 challenge virus was
controlled, but the RABV-based vector did not protect from a highly
pathogenic challenge virus (Faul et al., 2009). Nevertheless, a highly
attenuated form of the live-viral VSV vector is currently being tested in
a phase I clinical trial for HIV-AIDS (NCT01438606, Table 2). Other
approaches for HIV-1 vaccines are based on NS-NSV vectors such as
MeV (Lorin et al., 2004) (NCT01320176, Table 2) or NDV (Carnero et al.,

2009). These vectors are desirable due to their proven efficacy and
safety profiles (MeV) (del Valle et al., 2007), or because they are
replication-deficient in mammals (NDV). Both MeV and NDV are
currently in different stages of development as the search for an
effective HIV-1 vaccine continues.

At least six recently initiated clinical studies are assessing the
efficacy of NS-NSV-based vectors as vaccines against EBOV (Table 2;
for review (Marzi and Feldmann, 2014)). This effort is urgent due to
the current public health crisis in West Africa. Multiple NHP studies
have proven that a recombinant VSV that has been deleted of its own
G protein and is instead expressing EBOV glycoprotein (GP) is
efficient for preventing the disease (VSVΔG-ZEBOV, Table 2). A
different approach is used for the RABV vector, which contains EBOV
GP in addition to RABV G. Because both proteins are incorporated
into the RABV virions, this vaccine can use an inactivated form of the
virus, and therefore it should be a very safe vaccine against EBOV and
RABV (Blaney et al., 2013) infections, which are both a problem in
West Africa.

Beside these two rhabdoviral vectors, human parainfluenza virus
type 3 (hPIV3) (Bukreyev et al., 2007) and the other paramyxovirus
NDV (DiNapoli et al., 2010) expressing EBOV GP are being developed
as potential EBOV vaccines. The life cycle of these viruses should allow
intranasal or oral application, which is an advantage, and both of
these viral vectors might be safer than other live-viral vectors.
However, concerns include preexisting immunity for hPIV3 (a com-
mon human cold virus) and the lack of a strong anti-EBOV immune
response. As for all such live vectors, the challenge with these is to
achieve a balance between pathogenicity and immunogenicity.

Since the major target for NS-NSV antibodies is the glycopro-
tein or glycoproteins, these have been exchanged to circumvent
vector-specific neutralizing immune responses. For VSV, the Rose
laboratory used the G protein of the New Jersey strain to boost
HIV-immunity elicited by a vector using the G protein from the
non-cross-reactive VSV serotype Indiana (Haglund et al., 2002).
Importantly, the filovirus GPs can functionally replace VSV G, a fact
that is being used to develop Ebola vaccines (review see (Marzi
and Feldmann, 2014)). Even if interference against successive
immunization with vaccines containing different GPs has not been
documented, vector-induced cytotoxic T-cells directed against the
other VSV proteins may eventually affect vector efficiency.

On the other hand, because an inactivated vaccine does result
in infection, multiple applications of an inactivated NS-NSV may
not induce specific cytotoxic T-cells that interfere with repeated
vaccination. This has been confirmed for RABV: multiple immuni-
zations with inactivated virions containing foreign antigens are
possible in the presence of vector immunity (Hudacek et al., 2014;
Papaneri et al., 2012).

In summary, different NS-NSV vectors hold great potential for the
development of new vaccines. It is important to note that certain
advantages and disadvantages exist for each of them. These include
concerns regarding vector pathogenicity for live, replication-compe-
tent vectors, and the potential need for multiple inoculations for
replication-deficient or inactivated vaccines. To develop multiple NS-
NSV vector platforms is advisable because multiple immunizations are
not possible for most live viral vectors due the vector-directed immune
response that is induced after the first application.

New Mononegavirales for oncolytic therapy

The concept of virotherapy originates from the observation of
occasional tumor regressions after natural viral infections (Kelly and
Russell, 2007). While early virotherapy clinical trials performed
decades ago were poorly controlled, the advent of reverse genetics
allowed researchers to operate with viruses for which replication
and gene expression could be easily monitored. Current virotherapy
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clinical trials are based on viruses of nine different families, including
Paramyxoviridae and Rhabdoviridae within the order Mononegavirales
(Miest and Cattaneo, 2014). In these trials, therapeutic efficacy is
assessed by well-defined biological end points, host immunity is
documented, and vectors and clinical trial protocols are continuously
improved (Liu et al., 2007; Russell et al., 2012). MeV and MuV
infections, among others, have occasionally been associated with
cancer remissions (Kelly and Russell, 2007). For example, a so-called
“spontaneous” complete regression of a large retro-orbital Burkitt's
lymphoma tumor was documented after acute measles infection
(Bluming and Ziegler, 1971), and spontaneous cases of lymphoma
remissions after acute measles have been documented in hospitals of
three continents (Kelly and Russell, 2007). MeV and MuV, as the
other “oncolytic” viruses, replicate preferentially in cancer cells
because these accumulate mutations in innate immunity and cell
cycle control proteins. Most virus strains used in current clinical trials
are further targeted for selective replication in cancer cells through
genetic modifications (Cattaneo et al., 2008).

Rather than attempting to cover all pre-clinical activities ongoing
with recombinant Mononegavirales, we discuss here in some depth
three viruses that are already in cancer clinical trials (Table 2): two
genetically modified MeV and one VSV (Rhabdoviridae family). As
mentioned in the “vaccine” section, the modular nature of Mononega-
virales genomes, in combination with lack of icosahedral symmetry in
viral particles, allows stable expression of additional proteins, including
those used for tracking or arming the recombinant oncolytic viruses.

MV-CEA: development and validation

Approval of any new drug, including recombinant viruses, for
patient delivery in clinical trials is preceded by detailed FDA review
of its manufacturing process, as well as comprehensive toxicology
and biodistribution studies. A key first step for the development of
MeV-based cancer clinical trials was the generation of viruses for
which distribution and replication throughout the body can be
monitored. Two approaches were taken to facilitate infection mon-
itoring. In the first one, the non-immunogenic soluble form of the
carcinoembryonic antigen (CEA) was expressed from an additional
transcription unit (Peng et al., 2002). The replication of this virus
(MV-CEA, Table 2, top line) can be easily documented by measuring
CEA blood concentration by using an available clinical kit.

To support a phase I trial of intraperitoneal administration of MV-
CEA in patients with recurrent ovarian cancer, biodistribution, toxicity,
and efficacy studies were performed. Biodistribution was character-
ized in MeV-sensitive Ifnarko-CD46Ge transgenic mice (Mrkic et al.,
1998). This analysis revealed that MV-CEA administered into the
peritoneal cavity efficiently infected peritoneal macrophages and
these trafficked to abdominal draining lymph nodes, as well as to
the marginal zone of the spleen (Peng et al., 2003). Toxicology studies
were performed by intraperitoneal administration of large doses of
MV-CEA in the same model. These studies were essentially negative,
with no significant toxicity encountered at any dose level. Efficacy
studies, which included dose–response analyses in an intraperitoneal
ovarian cancer xenograft model, allowed researchers to correlate the
different kinetic profiles of CEA expression with the different ther-
apeutic outcomes (Peng et al., 2006).

Based on these studies a clinical trial was planned to determine
the maximum tolerated dose of intraperitoneal administration of
MV-CEA (Table 2; clinicaltrials.gov identifier: NCT00408590). The
trial foresaw treatment of groups of three patients with 10-times
increasing doses of virus (103–109 infectious units), for a total of 21
patients. Because of the requirement to completely evaluate the
results obtained with a group of patients before proceeding to the
next one, the trial needed about 5 years to be completed. At the end
of the trial, it was concluded that the intraperitoneal treatment with
MV-CEA was well tolerated even at the highest doses. Interestingly,

median survival of patients on study was 12 months, comparing
favorably to an expected median survival of 6 months in this patient
population (Galanis et al., 2010). Since the presence of neutralizing
antibodies was suspected as being the major limitation for efficacy, a
follow up phase II clinical trial is planned to addresses this limitation
by delivering the virus through cell carriers. In this protocol (Table 2;
clinicaltrials.gov identifier: NCT02068794), patients with recurrent
ovarian cancer are being treated with mesenchymal stem cells
infected with the other recombinant virus MV-NIS.

MV-NIS: monitoring the spread of oncolytic viruses in patients
over time

Towards providing anatomical information about the location of
virus-infected cells in cancer patients, in vivo spread of an oncolytic
virus should be monitored noninvasively over time. To achieve this
goal a recombinant virus coding for the human thyroidal natrium
iodine symporter (NIS) was generated (Dingli et al., 2004). NIS is a
channel protein that transports iodine, and its expression in the
thyroid has been exploited for more than 50 years in clinical practice
for thyroid imaging with 123I, or thyroid ablation with 131I.

MV-NIS infected cells can concentrate radioactive iodine from
the bloodstream, enabling noninvasive single photon emission
computed tomography imaging of infection using 123I or techne-
tium. This approach has been used for high resolution monitoring of
viral replication in pre-clinical models (Miest et al., 2013). MV-NIS
has also been used to enhance the therapeutic potency of measles
virotherapy by timed administration of 131I (Dingli et al., 2004).
Phase I clinical trials using MV-NIS have been initiated for ovarian
cancer, myeloma, mesothelioma, and head and neck cancer
(Table 2; clinicaltrials.gov identifier: NCT00408590, NCT00450814,
NCT01503177 and NCT01846091).

As MV-CEA, clinical grade MV-NIS was manufactured in a
dedicated facility while adhering to the principles of Good Manu-
facturing Practice (GMP). Since the intravenous delivery of up to
1011 infectious units was foreseen, a new process was developed for
the manufacture of high titer virus stocks. This resulted in the
production of pure and homogeneous MV-NIS at a concentration of
109 infectious units/ml. Pre-clinical efficacy studies were conducted
in SCID mice bearing subcutaneous myeloma xenografts. Pre-
clinical pharmacology and toxicology studies were conducted in
MeV-susceptible Ifnarko-CD46Ge transgenic mice, and in MeV-naïve
squirrel monkeys (Myers et al., 2007).

Multiple myeloma was selected as target for the first systemically
delivered oncolytic vitotherapy clinical protocol because most
patients have strongly reduced antibody titers to many infectious
agents, including MeV. The multiple myeloma phase I clinical trial
(NCT00450814) had a standard cohorts-of-3 design with a first dose
level of 106 infectious units of MV-NIS, increasing by 10-fold dose
increments to a maximum feasible dose of 1011 infectious units. At
the highest dose, the virus was infused into a superficial arm vein in
100 mL of normal saline over 60 min (Russell et al., 2014).

Even if all eligible patients had relapsing myeloma refractory to
approved therapies, Russell et al. reported success: the first two
measles seronegative patients treated at the highest dose responded
to therapy, and one experienced durable complete remission at all
disease sites. Tumor targeting was clearly documented by NIS-
mediated radioiodine uptake in virus-infected plasmacytomas. Toxi-
cities resolved within the first week after therapy (Russell et al., 2014).
This was the first well-documented remission from disseminated
cancer after systemic virotherapy. Based on this success, this clinical
trial is being expanded at the highest virus dose. The target group will
include patients with minimal if any measles-neutralizing antibodies.
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VSV-IFNβ: attenuating toxicity by interferon expression

A genetically modified VSV producing interferon-β (VSV-IFNβ)
is the third recombinant virus of the Mononegavirales order
approved as experimental cancer therapeutic. A phase I clinical
trial to evaluate its safety in patients with liver cancer is recruiting
(Table 2; clinicaltrials.gov identifier: NCT01628640), and a clinical
trial for head and neck cancer is in preparation (Kurisetty et al.,
2014). Several years ago it was shown that VSV induces potent
in vitro and in vivo tumor cytotoxic effects, and its oncolytic
efficacy was documented in a number of xenograft and syngeneic
models (Barber, 2005). However, VSV-induced neurotoxicity initi-
ally limited the clinical development efforts with this agent
(Johnson et al., 2007).

To attenuate toxicity, a recombinant VSV that carries the gene
encoding interferon-βwas developed. This virus showed an improved
safety profile while keeping its oncolytic potency (Obuchi et al., 2003;
Willmon et al., 2009). The primary purpose of the current phase
clinical trial of liver cancer is to evaluate the safety of VSV-IFNβ.
Although the primary goal of any phase I study is to evaluate safety,
patients may benefit clinically by having shrinkage or stabilization of
their tumor or reduction in their cancer related symptoms, as
observed in some of the MeV-based clinical protocols.

Next generation oncolytic viruses: enhancing efficacy

Viruses currently used in cancer clinical trials are safe at the highest
doses achievable by today's manufacturing processes: adverse events
beside fever and general flu-like symptoms are rare (Liu et al., 2007).
No transmission of an oncolytic virus from treated patients to carers or
other contacts has been noted, although shedding has been docu-
mented in the urinary and respiratory tract (Galanis et al., 2010). While
safety was consistently shown, efficacy is limited. Thus the current key
challenge is to develop more effective oncolytic viruses that replicate
with greater efficiency and specificity.

Towards improving cancer specificity of Mononegavirales, three
types of targeting are possible: particles can be activated through
cancer-specific proteases, cell entry can be re-directed through cancer-
specific cell surface proteins, and microRNA down-regulated in cancer
cells can be exploited. To improve efficacy viruses are armed through
the expression of either prodrug convertases that can activate cancer
therapeutics, or ion channels that enable radiosensitization, or immu-
nostimulatory cytokines that induce antitumor immunity (Miest and
Cattaneo, 2014). To provide shielding from neutralizing antibodies
different envelopes are used sequentially. We discuss here selected
examples of recombinant viruses that illustrate different targeting or
arming principles, or their combination towards a specific cancer
treatment.

Targeted viruses

The principle of cancer-specific in situ activation through proteases
was established with the Paramyxoviridae SeV (Kinoh et al., 2004) and
MeV (Springfeld et al., 2006). This approach is based on the modifica-
tion of their fusion proteins, which require protease cleavage for
activation. Cleavagewas made dependent on amatrix metalloprotease,
MMP-2, which recognizes and cleaves a specific hexapeptide sequence.
MMP are zinc-dependent endopeptidases that promote tumor pro-
gression by cleaving the extracellular matrix, and are up-regulated in
almost every type of human cancer (Egeblad and Werb, 2002).

A recombinant MeV was generated with a sequence recognized
by MMP-2 engineered into the fusion protein. This virus was unable
to propagate unless it was added to cells expressing MMP-2. In mice,
the virus retained full oncolytic activity when inoculated into MMP-

positive subcutaneous cancers, but unlike the wild-type virus, it did
not kill susceptible mice after intracranial inoculation (Springfeld
et al., 2006). Thus the MMP-2 cleavable virus is safer than its
standard precursor. While safety is not an issue in current clinical
trials, future one may consider more aggressive dosing. In these
cases, enhanced tumor specificity by MMP-selective activation may
maintain an ideal safety profile.

The principle of cancer-specific cell entry was also developed with
Paramyxoviridae. In the envelope of these viruses, receptor attach-
ment and fusion functions are separated on two proteins. In contrast,
a single protein of other Mononegavirales families performs both
functions. Among the Paramyxoviridae, targeting of the MeV envelope
is most advanced. The MeV attachment protein (hemagglutinin, H)
interacts with different receptors: the primary receptor signaling
lymphocyte activation molecule (SLAM, CD150) is used for initial
spread in lymphatic organs (Ferreira et al., 2010; Tatsuo et al., 2000),
whereas the adherens junction protein nectin-4 is subsequently used
to gain access to the upper airways epithelium and exit the host
(Muhlebach et al., 2011). In addition, the vaccine strain has gained the
ability to use the ubiquitous membrane cofactor protein (MCP, CD46).
The footprints of all three receptors on H have been characterized
structurally and functionally (Mateo et al., 2014).

In 2000 MeV cell entry was targeted to designated receptors
simply by adding small specificity determinants to the H-protein
(Schneider et al., 2000). It was then demonstrated that even larger
single chain antibodies could be used to target viral entry in
cultivated cells (Hammond et al., 2001), as well as in xenografts set
in immunodeficient mice (Bucheit et al., 2003). Availability of
single chain antibodies against almost every cancer-relevant cell
surface protein allowed testing of many potential entry targets.
Indeed MeV-based re-targeting is versatile: many re-targeted
viruses have been generated and shown to be effective in different
animal models of oncolysis (Nakamura et al., 2005).

On the other hand, cell entry targeting may not be necessary for
most cancer applications: MV-CEA andMV-NIS can enter cells through
CD46, which is over-expressed in many cancer types (Russell and
Peng, 2009). In view of this fact, and of the complex regulatory
requirements and large investments necessary to produce clinical
grade viruses, specifically entry re-targeted strains have not yet
reached production stage. However, recent results questioned whether
CD46-dependent entry always favors efficient oncolysis: no direct
correlation between CD46 expression levels and therapeutic efficacy
was observed in clinical trials, and oncolytic ablation of certain
lymphoma xenografts occurred only when cell entry occurred through
SLAM (Miest et al., 2013). Thus, entry targeting may soon be re-
prioritized.

Based on positive results with other virus types, the principle of
negative post-entry targeting was established in the two Mononega-
virales VSV and MeV (Edge et al., 2008; Leber et al., 2011). In particular,
since neuron-specific microRNA-7 is downregulated in gliomas but
highly expressed in normal brain tissue, a microRNA-sensitive MeV
containing target sites for this microRNAwas engineered. Even though
highly attenuated in presence of microRNA-7, this virus retained full
efficacy against glioblastoma xenografts. Furthermore, microRNA-
mediated inhibition protected transgenic mice susceptible to MeV
infection from a potentially lethal intracerebral challenge. Importantly,
endogenous microRNA-7 expression in primary human brain resec-
tions tightly restricted replication and spread of microRNA-sensitive
virus. Since the three targeting mechanisms discussed above are based
on different principles, they can be combined.

Armed viruses, and the pathway to clinical translation

While multiple targeting layers will yield viruses that replicate
very selectively within tumors, the main limitation of current clinical
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trials is efficacy. Cancer therapy efficacy can be enhanced by the
combination of different treatment modalities. Indeed, no single drug
or treatment will cure cancer, and most therapeutic regimens are
based on combinations of drugs, radiation, and surgery to maximize
patient survival. Recombinant viruses armed with specific genes may
perform even better by integrating different components of current
cancer therapy regimens (Ottolino-Perry et al., 2010). For example,
judiciously timed administration of 131I can be used to enhance the
therapeutic potency of virotherapy (Dingli et al., 2004).

A second example of this integrative approach is an armed and
targeted virus for lymphoma treatment. This virus was generated as
an enhancer of FCR, a front-line treatment for certain forms of non-
Hodgkin lymphoma. The FCR regimen is based on cycles of treat-
ment with fludarabine phosphate, cyclophosphamide, and the
anti-CD20 antibody Rituxan. As an alternative to Rituxan, a CD20-
targeted measles virus was considered. This virus was armed with
the prodrug convertase purine nucleotide phosphorylase, which
converts fludarabine phosphate to a highly diffusible substance that
is capable of efficiently killing bystander cells. The CD20-targeted
and convertase-armed virus was shown to synergize with fludar-
abine to achieve oncolytic efficacy after systemic inoculation in a
mantle cell lymphoma xenograft model (Ungerechts et al., 2007).
Precise timing of cyclophosphamide, virus, and fludarabine admin-
istration was shown to increase the window of therapeutic oppor-
tunity (Ungerechts et al., 2010).

Finally, we note that the original MeV infectious cDNA, from
which MV-CEA and MV-NIS were derived, accidentally accumulated
mutations in the innate immunity control proteins that further
attenuate viruses derived from it (Devaux et al., 2011, 2007). While
this over-attenuation may have contributed to the safety of MN-CEA
and MV-NIS, it may also have impacted their clinical efficacy.
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