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Rodents are natural reservoirs for a variety of species of Borrelia
that cause relapsing fever (RF) in humans. The murine model of
this disease recapitulates many of the clinical manifestations of
the human disease and has revealed that T cell-independent anti-
body responses are required to resolve the bacteremic episodes.
However, it is not clear whether such protective humoral re-
sponses are mounted in humans. We examined Borrelia hermsii
infection in human hematopoietic stem cell-engrafted nonobese
diabetic/SCID/IL-2Rγnull mice: “human immune system mice” (HIS-
mice). Infection of these mice, which are severely deficient in lym-
phoid and myeloid compartments, with B. hermsii resulted in per-
sistent bacteremia. In contrast, this infection in HISmice resulted in
recurrent episodes of bacteremia, the hallmark of RF. The resolu-
tion of the primary episode of bacteremia was concurrent with the
generation of B. hermsii-specific human IgM. Remarkably, HISmice
generated antibody responses to the B. hermsii outer-membrane
protein Factor H binding protein A. Sera from humans infected by
B. hermsii have a similar reactivity, and studies in mice have shown
that this response is generated by the B1b cell subset. HISmice
contain several B-cell subsets, including those with the phenotype
CD20+CD27+CD43+CD70−, a proposed human equivalent of mouse
B1 cells. Reduction of B cells by administration of anti-human CD20
antibody resulted in diminished anti-B. hermsii responses and per-
sistent bacteremia in HISmice. These data indicate that analysis of
B. hermsii infection in HISmice will serve as a model in which to
study the cellular and molecular mechanisms involved in control-
ling human RF.
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Relapsing fever (RF) in humans can be caused by arthropod-
borne spirochetes of the genus Borrelia (1). This infection is

characterized by febrile episodes of bacteremia, and it can extend
to a variety of tissues (2–4). The major agents of RF in North
America, Borrelia hermsii and Borrelia turicatae, are transmitted
to humans by bites from infected ticks (5). Rodents are natural
reservoirs of tick-borne RF Borreliae and the murine model of RF
borreliosis recapitulates a number of pathophysiologic aspects of
the human disease (3, 6, 7).
The hallmark of this infection is recurrent episodes of high-

level bacteremia (>104 bacteria/μL blood), each caused by an-
tigenically distinct populations of bacteria generated by rear-
rangements of the genes encoding the dominant outer surface
antigen variable major proteins (Vmp) (8). Remarkably, each
episode is resolved within a few days (9–11). T cell-independent
B-cell responses are necessary and sufficient for clearing the RF
bacteremia in mice (9, 11–13). Mice deficient only in the secre-
tion of IgM experience persistently high bacteremia and become
moribund. In contrast, activation-induced cytidine deaminase-
deficient mice, which generate only IgM, control B. hermsii as
efficiently as WT mice. These data demonstrate that IgM is
necessary and sufficient for controlling B. hermsii in mice (11).
Indeed, passive transfer of IgM from convalescent mice to naive
mice is sufficient to confer protection (14, 15).

Four phenotypically and functionally distinct B-cell subsets
have been described in mice: follicular (FO or B2), marginal zone
(MZ), B1a, and B1b (16, 17). The latter three subsets can effi-
ciently mount T cell-independent responses (16, 17). We have
previously shown thatmice deficient in B1a cells control infections
by both the highly virulent B. hermsii strain DAHp-1 (which grows
to>104/μL blood) as well as an attenuated strainDAH-p19 (which
was generated by serial in vitro passage of DAH-p1 and reaches
∼103/μL blood) (12). In contrast, concurrent with the resolution of
DAHp-1 and DAH-p19 bacteremia, B1b cells in the peritoneal
cavity expand andRag1−/−mice reconstituted with these B1b cells
generate a B. hermsii-specific IgM response that is required for
conferring long-lasting protection (11, 12). We found that the
IgM-derived from B1b cells of convalescent mice recognizes
a specific B. hermsii outer-membrane protein, Factor H binding
proteinA (FhbA), a putative virulence factor present on amajority
of B. hermsii clinical isolates (18, 19). Inefficient clearance of
DAH-p1 in splenectomized mice during the primary bacteremic
episode suggests that MZ B cells also play a role in controlling B.
hermsii during a heightened bacteremia (7, 11). Consistent with
this, Bockenstedt and coworkers have demonstrated that MZ B
cells mount anti-B. hermsii antibody responses (20).
These studies exemplify how mouse models have significantly

contributed to our discovery of the immune mechanisms in-
volved in the induction of protective immune responses to in-
fectious pathogens. However, the relevance of findings made in
murine models to an understanding of infectious disease pro-
gression and resolution in humans is often difficult to assess.
Chimeric mice generated by xenografting severely immunodefi-
cient mice such as nonobese diabetic Cg-Prkdcscid/IL2rγtm1Wjl/SzJ

(NSG) mice with human hematopoietic stem cells (HSCs) pro-
vide an experimental platform to investigate this issue. Such
xenoengraftment results in reconstitution of many compartments
of the human immune system (21–23). As such, these mice can
be referred to as “human immune system” mice (HISmice) (24–
30). In the present study, we found that B. hermsii infection of
HISmice mice results in recurrent episodes of bacteremia, the
hallmark of this infection in humans. Moreover, resolution of
this bacteremia was human B cell-dependent and correlated with
the production of human IgM with specificities analogous to
those observed in B. hermsii-infected mice and humans. As
HISmice contain a variety of phenotypically distinct peripheral
B-cell subsets, further analysis of this model should allow eval-
uation of whether one or several of these subsets are required for

Author contributions: R.V., T.M., and K.R.A. designed research; R.V., H.L., and K.R.A.
performed research; R.V., T.M., and K.R.A. analyzed data; and T.M. and K.R.A. wrote
the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.
1To whom correspondence may be addressed. E-mail: manser@kimmelcancercenter.org or
kishore.alugupalli@mail.jci.tju.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1108776109/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1108776109 PNAS | December 20, 2011 | vol. 108 | no. 51 | 20707–20712

IM
M
U
N
O
LO

G
Y

mailto:manser@kimmelcancercenter.org
mailto:kishore.alugupalli@mail.jci.tju.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1108776109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1108776109/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1108776109


resistance to B. hermsii infection, as the B1b and MZ subsets are
in the mouse.

Results
Recurrent Episodes of B. hermsii Bacteremia in HISmice. B. hermsii
infection results in recurrent episodes of bacteremia in several
inbred WT mouse models (31). Each episode consists of anti-
genically distinct populations of bacteria expressing different
Vmps (32, 33). When WT mice are infected with strain DAH-p1
(which expresses Vmp2), the peak bacterial density during the
primary episode can reach approximately 5 × 104 spirochetes/μL
blood, and this episode lasts for 3 d (19). Typically, the sub-
sequent relapses are significantly less severe, and by 3 to 4 wk
postinfection, the bacteremic episodes are undetectable. NSG
mice, similar to mice deficient in B cells (e.g., scid, Rag1−/−, or
μMT−/−) or IgM (sIgM−/−) (11) experience persistently high
levels of bacteremia (Fig. 1A, Middle). Unlike NSG mice, HIS-
mice controlled the primary bacteremic episode by 7 to 9 d after
tinfection (Fig. 1A, Bottom). However, the bacterial burden in
HISmice was fivefold higher than that observed in WT mice.
Similarly, although the second episode of bacteremia was more
prolonged compared with WT mice (Fig. 1A), it was less severe
than the primary episode in HISmice as well as in WT mice.
Despite control of the initial waves of bacteremia, HISmice
infected with DAH-p1 became moribund by 3 wk after infection.

HISmice Generate Anti-B. hermsii IgM Responses Concurrent with
Resolution of Bacteremic Episodes. The anti-B. hermsii IgM re-
sponse in WT mice occurs as early as 3 to 4 d after infection, and
the generation of this response coincides with the resolution of the
primary bacteremic episode (12). A delay in anti-B. hermsii
responses typically results in more severe bacteremic episodes
(31). Consistent with this, the severity of primary bacteremic epi-
sode in HISmice was associated with a delayed anti-B. hermsii
human IgM response (Fig. 1B). WT mice mount a specific IgM
response to FhbA, andB1b cells of immunemice can generate this
response (19). As IgM or sera of patients with RF also recognize
FhbA, in addition to a number of other proteins (18, 34), we tested
whether HISmice also generate a response to this antigen. Im-
mune HISmice contained serum IgM specific for FhbA, but at
levels lower than that seen in immune WT mice (Fig. 1C).

HISmice Efficiently Control a Moderately Virulent Strain of B. hermsii.
Although HISmice controlled primary and secondary bacteremic
episodes by the highly virulent strain DAH-p1, the duration and
severity of the these episodes were greater than that observed in
WT C57BL6 mice (Fig. 1A), suggesting that the reconstitution of
the B cells required for controlling B. hermsii in these mice is
suboptimal. In WT mice, control of strain DAH-p1 but not strain
DAH-p19 requires MZB cells (11). As the existence of functional
equivalents of MZ B cells in HISmice has not been described to
our knowledge, we evaluated B. hermsii infection in HISmice by
usingDAH-p19. Infection ofNSGmice withDAH-p19 resulted in
persistent bacteremia more than two orders of magnitude higher
than seen in WT mice (Fig. 2A). Although DAH-p19 caused
heightened and prolonged bacteremic episodes in HISmice com-
pared with WT mice, by 4 wk, bacteremia was controlled and the
mice did not become moribund, unlike HISmice infected with
strain DAH-p1. Moreover, these convalescent mice also gener-
ated anti-FhBA–specific IgM responses (Fig. 2B).

Analysis of B Cells in Spleen and Peritoneal Cavity of HISmice. Splenic
B cells and peritoneal B cells, in particular the B1b cell subset,
play a critical role in controlling B. hermsii in mice (11, 12). As
HISmice control B. hermsii and mount a specific IgM response,
we analyzed the composition of B cells in their spleens and
peritoneal cavities, by using markers that identify various subsets
of B cells in normal mice, as well as markers of maturity. A
majority of B cells in the spleen expressed CD10, a marker of B-
cell immaturity, but numerous IgMhigh, IgDlow and IgD+, IgM+

CD10− B cells were also present (Fig. S1).
Recently, a population of B cells (CD20+CD27+CD43+-

CD70−) was identified in human cord blood and adult peripheral
blood that has properties characteristic of mouse B1 cells (35).
Approximately 75% of these cells express CD5, suggesting that
humans may contain both B1a (CD5+) and B1b (CD5−) cell
subsets (35). We analyzed the peritoneal cavity and spleen of
HISmice for the presence of B cells with this phenotype.We found
that approximately 1% of the peritoneal compartment was com-
prised of CD19+ cells, of which approximately 30% were naive B
cells (CD20+CD27−CD43−), approximately 30%werememoryB
cells (CD20+ CD27+ CD43−), and approximately 40% were
CD20+CD27+CD43+CD70− cells (Fig. 3A). In spleen, more than

Fig. 1. HISmice can resolve severe bacteremic
episodes and mount B. hermsii-specific IgM
responses. (A) WT (C57BL/6), NSG, or human he-
matopoietic stem cell-engrafted NSG (NSG+HSC)
mice were infected i.v. with 5 × 104 B. hermsii
strain DAH-p1, and bacteremia was monitored by
dark-field microscopy. Each plot represents data
from an individual mouse. Representative data
from three mice from a total of seven are shown
(B) B. hermsii-specific IgM generated during an i.v.
infection of WT (C57BL6) or HISmice (NSG+HSC)
was measured by ELISA. Mean ± SD values are
shown. (C) FhbA-specific IgM in preimmune (day
0 postinfection) or immune (1–3 wk postinfection)
mice following i.v. infection was measured by
ELISA. Data points represent individual animals, and
horizontal bars represent means of each group.
Statistical significance of genotype was measured
by Student t test (***P < 0.001 and *P < 0.05).
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15% of the cells expressed CD19 and approximately 40% of them
werenaiveB cells, approximately 5%werememoryB cells, and the
remainder had the human B1 phenotype (Fig. 3B). Blood con-
tained approximately 1% CD19+ cells, and the phenotype and
composition of these cells were comparable to the cells in the
spleen (Fig. 3C). Although the majority of the “B1-like” cells in
peritoneal cavity, spleen, and blood of HISmice expressed CD5,
a fraction of them did not (Fig. 3 A–C).
Histological analyses of spleens and mesenteric lymph nodes

of HISmice revealed lymphoid-rich cell clusters in which T cells
and B cells were partially segregated into distinct regions (Fig. 3
D and E). However, the microarchitecture of these lymphoid
regions was not as well demarked as is characteristic of these
organs in mice and humans. In addition, these analyses did not
reveal a well defined MZ region containing IgMhigh, IgDlow B
cells, the phenotype of murine MZ B cells.

Depletion of B Cells in HISMice Results in Diminished Anti-B. hermsii
Responses. T cell-independent B-cell responses are critical for
controlling B. hermsii, and mice deficient in B cells or IgM are
completely incapable of controlling B. hermsii (9–11). To de-
termine if humoral responses are critical for protective immunity
to B. hermsii in HISmice, we treated them with rituximab (anti-
human CD20) before infection. This treatment resulted in re-
duction in B cells in the circulation as well as in peritoneal cavity
and spleen (Fig. 4A). These B cell-depleted HISmice, when
infectedwithB. hermsiiDAH-p1, exhibited a severe impairment in
anti-B. hermsii as well as anti-FhbA IgM responses (Fig. 4 C and
D), and suffered persistently high-level bacteremia that was
comparable to that in NSG mice, and became moribund by 2 wk
after infection (Fig. 4B).

Discussion
Rodent models have been exceptionally useful for elucidating the
immunological mechanisms underlying protective responses to
viral, bacterial, and parasitic infections. However, species-specific
variation in immune responses to a given pathogen are common
(24, 25, 27). This situation poses limitations on the degree to which
findings made in rodent models can be translated to better un-
derstanding of immune responses to infectious pathogens in
humans. In the present study, we have developed a model of
B. hermsii infection in mice reconstituted with a human immune

system. This infection system recapitulates the hallmark of human
RF - recurrent episodes of bacteremia. Furthermore, this infection
induces specific IgM antibody responses that are observed in
humans and mice (18, 34). B. hermsii-infected HISmice also ex-
hibit splenomegaly, a characteristic found in humans as well as
mice (Fig. S2). These findings suggest that HISmice will be
a powerful experimental platform for use in testing the relevance
of data obtained on themechanisms ofmicrobial pathogenesis and
antimicrobial antibody responses in rodent models to an un-
derstanding of these processes in humans.
We found that the frequency of human B1 cells differentiated

from human umbilical cord blood HSCs and the overall B-cell
composition in HISmice is strikingly similar (Fig. 3) to that found
in human umbilical cord blood (35). The frequency of B1 cells
decreases with age in normal individuals (35), and therefore the
high frequency of B1 cells that we have found in HISmice could
be a result of the use of umbilical cord blood HSCs as opposed to
adult human bone marrow HSCs in the generation of our HIS-
mice. This also implies that our current human immune system
mouse model likely represent that of the humoral immune sys-
tem of human infants.
Although HISmice can control B. hermsii infection, they do so

less efficiently than adult WT mice. Our data suggest that this
may be caused by the relative immaturity of the B-cell com-
partment in these mice, a low frequency of a functional B-cell
subset necessary for the anti-B. hermsii IgM response, or both.
The murine cytokine environment may not be optimal for sup-
porting development of mature human B cells. Indeed, expres-
sion of human cytokines in NSG mice was shown to enhance the
efficiency of reconstitution of a variety of human immune com-
partments including dendritic cells, monocytes and macrophages,
and NK cells (36). IL-7, a nonredundant cytokine for both B- and
T-cell development in mice (37) enhances T-cell development in
HISmice (38). Although its effect on B-cell development in
HISmice has not been characterized, administration of human
IL-7 might augment B-cell development quantitatively and
qualitatively (39–41). For example, IL-7 was shown to increase
B-cell receptor (BCR) diversity in mice (40), and IL-7–de-
pendent murine B cells play an important role in generating a T
cell-independent responses to a variety of antigens (42).
Another possibility for the suboptimal responses in HISmice

to B. hermsii could be attributed to the source of HSCs used for

Fig. 2. Efficient resolution of moderate bacteremic epi-
sodes in HISmice. (A) WT (C57BL/6), NSG, or human hema-
topoietic stem cell-engrafted NSG (NSG+HSC) mice were
infected intraperitoneally with 5 × 104 B. hermsii strain
DAH-p19, and bacteremia was monitored by dark-field mi-
croscopy. Each plot represents data from an individual
mouse. Representative data from three mice from a total of
six are shown. (B) FhbA-specific IgM in preimmune (day
0 postinfection) or immune (1–3 wk postinfection) mice
following i.p. infection was measured by ELISA. Data points
represent individual animals, and horizontal bars represent
means of each group. Statistical significance of genotype
was measured by Student t test (*P < 0.05 and **P < 0.01).
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reconstitution. Mouse B cells derived from fetal progenitors
contain a high frequency of natural antibody-producing cells that
have a restricted BCR repertoire (43, 44). Such cells are known
to mount responses to evolutionarily conserved bacterial anti-
gens such as phosphorylcholine (45), but not to structurally di-
verse antigens such as those expressed on a number of bacterial
pathogens including B. hermsii (11, 46, 47). In contrast, murine B
cells derived from adult precursors possess diverse BCR reper-
toires (48, 49). Comparison of HISmice reconstituted with HSCs
derived from umbilical cord blood and adult bone marrow will be
required to test this idea.
In the mouse system, B. hermsii infection induces expansion of

a population of B1b cells that persists for extending periods after
the infection is cleared and is responsible for resistance to re-
infection. Neither expansion nor persistence of this population
requires the presence of T cells, demonstrating that this is
a unique T cell-independent form of immune memory. HISmice
contain a subset of human B cells suggested to be the functional
equivalents of murine B1 B cells, as well as several other B-cell
subsets (35). As such, by applying experimental approaches de-
veloped in mouse models to improved versions of HISmice, it
should be possible to determine which of these subsets are piv-
otal for resolution of B. hermsii bacteremia, whether the re-
sponse of this subset is T cell-independent, and whether the
responding human B cells give rise to an expanded, persistent
population that confers long-lasting resistance to reinfection. It
is likely that this general strategy will be of utility for elucidating

the molecular and cellular basis for antibody-mediated clearance
of and immunity to a variety of human bacterial pathogens.

Materials and Methods
Mice. Mice were housed in microisolator cages with free access to food and
water in a specific pathogen-free facility of Thomas Jefferson University. The
studies were reviewed and approved by the institutional animal care and use
committee. C57BL6/J and NSG mice were purchased from Jackson Laboratory
and then bred in-house. The NSG mice were given sulfamethoxazole tri-
methoprim-containing drinking water on alternate weeks.

Isolation of CD34+ HSCs. Human cord blood was obtained from healthy full
term newborns (Department of Obstetrics and Gynecology, Thomas Jefferson
University) as approved by the institutional research board. After Ficoll gra-
dient centrifugation to purifymononuclear cells, CD34+ cells were enriched by
using immunomagnetic beads according to the manufacturer’s instructions
(CD34+ isolation kit; Miltenyi Biotec). The purity of isolated HSCs was more
than 90% as evaluated by flow cytometry. Contaminating CD3+ T cell content
was 0.9 ± 1.5%. Cells were viably frozen in 90% FBS/10% DMSO at −150 °C.

Xenotransplantation of HSCs into NSG Mice. Twenty-four to 48 h after birth,
pups were given whole-body irradiation at a dose of 2 Gy (200 rad). After 4 h,
105 HSCs were injected intrahepatically in 25 μL of PBS solution by using
a 30-gauge needle. Mice were weaned at 3 wk of age and randomly dis-
tributed among different experimental groups.

Flow Cytometry. To evaluate human immune cell engraftment, peripheral
blood was collected into PBS solution containing 200 U of heparin/mL. Red
blood cells were lysed and 0.1 to 1 × 106 cells were stained with appropriate

Fig. 3. Analysis of B cells in HISmice. (A)
Peritoneal cavity cells, (B) spleen cells,
and (C) blood were stained with anti-
bodies specific for human CD19, CD20,
CD27, CD43, CD70, and CD69, and ana-
lyzed by flow cytometry. All B cells were
first identified by CD19 positivity and
were further resolved (indicated by
arrows) as naive (CD20+CD27−), memory
B cells (CD20+CD27+CD43−CD70−), and
B1 cells (CD20+CD27+CD43+CD70−). As
described previously (35), a majority of
these B1 cells expressed CD5. The fre-
quency values of the indicated B-cell
populations are shown within the plots.
The data were generated by analyzing
a minimum of 20,000 cells and are rep-
resentative of three to five mice. Five
percent contour plots are shown. Im-
munohistochemistry of (D) spleen and
(E) mesenteric lymph nodes of a repre-
sentative mouse.
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antibodies in 100 μL of 1× PBS solution containing 3% BSA (Gemini Bio),
0.02% sodium azide, and 1 mM EDTA for 30 min on ice. The fraction of
human hematopoiesis-derived cells was determined by anti-huCD45 stain-
ing. All mice used in experiments contained a proportion of at least 50%
human CD45+ cells in peripheral blood lymphocytes. To determine the fre-
quency of various B-cell populations, spleen and peritoneal cavity cells were
harvested from individual mice in staining medium [deficient RPMI medium
1640 (Irvine Scientific) with 3% new calf serum, 1 mM EDTA]. After blocking
the murine Fc receptors with 2.4G2 antibody and human Fc receptors with
FC block, an aliquot of 50 μL (106 cells) of cells was incubated in a microtiter
plate with appropriately diluted antibody. The following additional fluo-
rescent-conjugated monoclonal antibodies specific for the indicated human
antigens were used: CD5-FITC (UCHT2), CD11b-APC (CBRM1/5), CD19-Pacific
blue (Hib19), CD20-Pacific blue (2H7), CD43-APC (CD43-10G7), CD69-PE
(FN50) conjugates (Biolegend); CD3-APC (S4.1), CD56-PE (MEM-188), and
IgM-FITC conjugates (Invitrogen); CD70-FITC (Ki 24), CD27-APC-H7 (M-T271),
CD34-PE (8G12), CD3-PE (UCHT1), IgD-PE (IA6-2), CD4-Percp.cy5.5 (SK3), CD8-
Percp-cy5.5 (SK1), CD27-percp-cy5.5 (M-T271) conjugates (BD Pharmingen);
and CD19-PE-Cy7 (HIB19) from eBioscience. Stained cells were analyzed on
LSRII flow cytometers (BD Biosciences). At least 20,000 events were acquired
per sample and analyzed with FlowJo software (TreeStar).

Immunohistology. At 16 wk after HSC transplantation, spleens and inguinal
and brachial lymph nodes were collected from reconstituted mice and frozen
in Tissue-Tek Optimal Cutting Temperature compound (Sakura Finetek).
Immunofluorescent staining was performed on 6-μm tissue sections as de-
scribed (50, 51). The following anti-human antigen antibodies were used:
CD19-FITC (SJ25-C1; Southern Biotech), IgM-FITC (H15001; Invitrogen), Ki67-
FITC (F7268, DAKO), and CD3-PE (SK7) and CD11c APC (S-HCL-3) (BD Phar-
mingen). The stained sections were analyzed by using fluorescence micros-
copy (DM 5000B; Leica Microsystems), and digital images were analyzed by
using LAS AF 1.8.1 software from Leica Microsystems.

Depletion of B Cells. For B-cell depletion of HISmice, anti-hCD20 mAb (ritux-
imab; Genentech) was used. Antibody was diluted in sterile PBS solution, and
a dose of 40 μg per mouse was injected i.v. twice per week for a total of 3 wk.
The extent of B-cell depletion in peripheral blood, peritoneal cavity, and
spleen was accessed by flow cytometry by using anti-human CD19 antibodies.

Infections. Twelve- to 16-wk-old mice were infected i.p. or i.v. via the tail vein
with 5 × 104 bacteria of the fully virulent B. hermsii strain DAH-p1 (from the
blood of an infected mouse) or DAH-p19, an attenuated strain derived from
in vitro passing of DAH-p1. Blood bacteremia was monitored by dark-field
microscopy (52).

ELISA. Murine IgM responses were measured with ELISA kits according to the
manufacturer’s instructions (Bethyl Laboratories). B. hermsii-specific murine
or human IgMwas measured by coating 96-well plates (ICN Biomedicals) with
in vivo-grownB. hermsiiDAH-p1 (105wet bacteria perwell). FhbA-specific IgM
was measured by coating 96-well plates with 1 μg/mL recombinant FhbA (19).
All plates were washed and blocked with 2% BSA in PBS solution, pH 7.2, for
2 h at room temperature before use. Blood samples of immunized mice were
diluted 1:125 (HISmice) or 1:250 (WT mice), the samples were centrifuged
(16,000 × g for 10 min), and the supernatant was used. Bound IgM was mea-
sured by using HRP conjugates of goat anti-mouse IgM or goat anti-
human IgM.

Statistics. Statistical analysis was carried out using GraphPad Prism version 4
(GraphPad). Differences between control and infected groups were evalu-
ated by Student t test (two tailed, unpaired), and a P value lower than 0.05
was deemed significant.
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