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Previous studies have established the subventricular (SVZ) and subgranular (SGZ) zones as sites of neurogenesis
in the adult forebrain (Doetsch et al., 1999a; Doetsch, 2003a). Work from our laboratory further indicated that
midline structures known as circumventricular organs (CVOs) also serve as adult neural stem cell (NSC) niches
(Bennett et al., 2009, 2010). In the quiescent rat brain, NSC proliferation remains low in all of these sites. There-
fore, we recently examinedwhether ischemic stroke injury (MCAO) or sustained intraventricular infusion of the
mitogen bFGF could trigger an up-regulation in NSC proliferation, inducing neurogenesis and gliogenesis. Our
data show that both stroke and bFGF induce a dramatic and long-lasting (14 day) rise in the proliferation
(BrdU+) of nestin + Sox2 + GFAP+ NSCs capable of differentiating into Olig2+ glial progenitors, GFAP +
nestin-astrocyte progenitors and Dcx+ neurons in the SVZ and CVOs. Moreover, because of the upsurge in
NSC number, it was possible to detect for the first time several novel stem cell niches along the third (3V) and
fourth (4V) ventricles. Importantly, a common feature of all brain niches was a rich vasculature with a blood–
brain-barrier (BBB) that was highly permeable to systemically injected sodium fluorescein. These data indicate
that stem cell niches aremore extensive than once believed and exist atmultiple sites along the entire ventricular
system, consistentwith the potential for widespread neurogenesis and gliogenesis in the adult brain, particularly
after injury.We further suggest that because of their leaky BBB, stem cell niches arewell-positioned to respond to
systemic injury-related cues which may be important for stem-cell mediated brain repair.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

It is now widely accepted that neural stem cells (NSCs) residing
in the subventricular zone (SVZ) of the lateral ventricle and the
subgranular zone (SGZ) of the hippocampal dentate gyrus are capable
of producing new neurons in the adult brain (Doetsch et al., 1999a,b;
Doetsch, 2003a,b; Alvarez-Buylla and Lim, 2004; Lie et al., 2004;
Mignone et al., 2004; Ming and Song, 2011).

In addition to thesewell-known sites of neurogenesis,we previously
postulated that the circumventricular organs (CVOs) comprise a mid-
line series of adult stem cell niches along the third and fourth ventricles
(Bennett et al., 2009, 2010). CVO stem cells possess many of the same
characteristics as SVZ neural stem cells (NSCs), including their
subventricular location, their ability to proliferate and express stem
cell markers like nestin, vimentin and Sox2 and their capacity to give
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rise to new neurons and glia in vitro, in vivo and after transplantation
into the adult brain (Bennett et al., 2009, 2010). Moreover, similar to
the SVZ, CVOs have permeable fenestrated capillaries and thus lack
the endothelial blood–brain-barrier (BBB) present in the remainder of
the brain (Johnson and Gross, 1993; Tavazoie et al., 2008). Consequent-
ly, the CVOs are able to sense and excrete factors from and into the
blood, and are thus often called the “windows of the brain” (Gross and
Weindl, 1987; Moyse et al., 2006; Joly et al., 2007).

In the quiescent brain, SVZ and CVO NSCs are present in relatively
low numbers. Therefore, in this study, we sought to stimulate their pro-
liferation and differentiation via ischemic injury (i.e. experimental
stroke) or infusion with a NSC mitogen (bFGF). We will show that
both ischemic stroke and bFGF produce a dramatic and long-lasting
rise in the proliferation and differentiation of NSCs in the SVZ and
CVOs but also in several other novel sites along the third (3V) and fourth
(4V) ventricles not described previously. Importantly, all of these sites
were also highly permeable to systemically injected sodium fluorescein,
suggesting a possible systemic route for injury-related cues to signal
niches of the need for new neurons and glia to repair the brain.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 1. Induction of cell proliferation in the CVO regions afterMCAO and intraventricular bFGF infusion. Localization and quantification of BrdU-labeled cells in CVO regions: SFO (A–C), ME
(D–F) and AP (G–I) at 4 days or in SFO (J–L), ME (M–O) and AP (P–R) at 14 days after MCAO or in SFO (S–U) and ME (V–X) 14 days after bFGF infusion as compared to control. Data is
expressed as mean ± S.E.M. *p b 0.05, **p b 0.01.
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Materials and methods

Animals

All procedures in this study were carried out in accordance with
the recommendations in the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health. The protocol was approved
by the IACUC Committee of the Thomas Jefferson University. All surgery
was performed under anesthesia, and all effortsweremade tominimize
suffering.

Antibodies and reagents

Bromodeoxyuridine (BrdU) was purchased from Fisher Scientific.
Sodium Fluorescein was purchased from Pfaltz & Bauer, Inc. Basic fibro-
blast growth factor (bFGF) was purchased from (R&D Systems). The
following primary antibodies were used in these experiments: rabbit
anti-GFAP (DAKO, 1:1500), mouse anti-nestin (Millipore, 1:200), rabbit
anti-doublecortin (Cell Signaling, 1:390), mouse anti-Sox2 (R&D
Systems, 1:1000), rat monoclonal anti-BrdU (Accurate Chemical,
1:200), rabbit anti-Olig2 (Millipore, 1:500), rat anti-mouse CD31,
mouse anti-rat CD-3 (BDBiosciences, 1:25). Rabbit anti-myeloperoxidase
(MPO) (DAKO, 1:300) and rabbit anti-IBA-1 (WAKO, 1:600). All second-
ary antibodies were Alexa Fluor antibodies from Invitrogen including
donkey anti-rabbit 405, 488 and 594, donkey anti-mouse 405, 488, 594
and 647, donkey anti-rat 488, 594 and 647.

BrdU administration

Adult male Sprague–Dawley rats weighing 275–300 g were admin-
istered BrdU (1 mg/ml) in their drinking water for one week, and then
on the 7th day, the rats were subjected to middle cerebral artery occlu-
sion (MCAO) or osmotic minipump implantation surgery. The rats
Fig. 2. Photomicrographs of dividingneural progenitor cells in the SVZ and CVO regions on days
SVZ (A, C) and CVO regions: SFO (B, D),ME (E, G) andAP (F, H) at 4 (A, B, E, F) and 14 (C, D, G,H)
in the SVZ (I, K) and CVO regions: SFO (J, L),ME (M, O) andAP (N, P) at 4 (I, J,M, N) and 14 (K, L,
indicated by arrows and shown at higher magnification (insets).
received two BrdU injections (i.p., 100 mg/kg of body weight) 12 h
apart, starting on the day of the operation and postoperative day 1 to
day 3 for a total of 8 injections. On either postoperative day 4 or day
14, the rats were deeply anesthetized with Nembutal (70 mg/kg) and
transcardially perfused with cold 4% paraformaldehyde.

Intraventricular bFGF infusion

bFGF was infused into the lateral ventricle using an Alzet osmotic
minipump. Briefly, adult male Sprague-Dawley rats weighing 275–
300 g were administered BrdU before and after surgery as described
above. Rats were anesthetized and placed in a stereotaxic apparatus
(David Kopf) with bregma and lambda in the same horizontal plane. A
midline incision was made and a stainless steel cannula (28 gauge)
was implanted in the lateral ventricle (reference to bregma:
anteroposterior = −0.8 mm, lateral = +1.5 mm, depth = 3.5 mm)
and connected to an osmotic minipump (model 2004, Alzet, Palo Alto,
CA). The animals received recombinant human bFGF (50 μg/ml) or arti-
ficial cerebrospinal fluid (aCSF) (n= 3 for each group) at a flow rate of
0.25 μl/h, resulting in a delivery of 300 ng of bFGF per day for 14 d.

Focal ischemic stroke: MCAO

Adultmale Sprague-Dawley rats weighing 275–300 gwere anesthe-
tized using SQ ketamine hydrochloride, xylazine and acepromazinema-
leate (60 mg/kg, 10 mg/kg, 5 mg/kg respectively). Body temperature
was monitored with a rectal temperature probe, and maintained with
a heating pad and/or a small fan to within 0.5 °C.

The rats were placed supine after anesthesia and MCAO was per-
formed as previously reported (Goldmacher et al., 2013) and modified
by Chen et al. (2013) and Wei et al. (2013). Briefly, the right common
carotid (CCA) and external and internal carotid arteries (ECA, ICA)
were exposed and the right ECA was ligated. The right CCA was ligated
4 and 14 afterMCAO. (Left panel): Nestin andBrdUdouble-labeled cells can be found in the
days post-MCAO. (Right panel): Similarly, Sox2 andBrdUdouble-labeled cells can be found
O, P) days post-MCAO. Representative double-immunoreactive cells in each CVO region are



Fig. 3.Dividing cells haveNSC identities in CVO regions on day 4 and day 14 afterMCAO. A
representative GFAP, Sox2 and BrdU triple-immunoreactive cell in the ME on day 4 after
MCAO, indicating its identity as a NSC (A). Cell indicated in (A) by arrow shown at higher
magnification (inset). In CVO regions (B, D, F andH), some BrdU+cells express nestin and
GFAP. Boxed areas are shown at higher magnification in C, E, G and I with representative
triple-labeled cells indicated. Arrowheads indicate GFAP + BrdU+ nestin-astrocyte pro-
genitor cells.
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at the proximal end and right ICA blood flow was then blocked by
clamping using a micro clip at its origin. A silicone rubber-coated
nylon filament (diameter with coating is 0.39 mm, Doccol) was then
inserted into the lumen of the CCA through a small opening. The
clamp on the right ICA was then removed and the nylon filament was
carefully advanced into the ICA until it obstructed the MCA. Two hours
later, the nylon filament was removed and CCA was ligated to stop
bleeding and allow reperfusion of the brain.

Viral reporter injections

Animals were anesthetized and placed in a Kopf stereotaxic frame.
2 μl of AAV-CAG-GFP expressing vector (Vector Biolabs, Philadelphia,
PA) was stereotaxically injected into the right lateral ventricle
near the SVZ (reference to bregma: anteroposterior = −0.8 mm,
lateral = −1.5 mm, depth = 3.5 mm) at a rate of 0.2 μl/min via a
33 g needle connected to a 5 μl Hamilton syringe driven by a Harvard
pump. Following infusion, the viral vector was permitted to diffuse
away from the needle for 2 min before withdrawal. Animals were
given an experimental stroke on the next day (N90% survival after
both procedures) and sacrificed 14 days later.

Immunostaining

Animals were perfused with cold (4 °C) paraformaldehyde (4%).
Brains were postfixed in 4% paraformaldehyde at 4 °C for 24–36 h
and immersed in 30% sucrose solution at 4 °C, then embedded in OCT
(Tissue-Tek, Sakura, Japan) before cutting with a cryostat (Microm
HM505E). Coronal sections were cut at 20 μm (rat) or 30 μm (mouse)
on a cryostat and collected onto slides. After antigen retrieval, sections
were incubated with primary antibodies in blocking buffer containing
0.1% Triton X100 and 5% normal donkey serum (NDS) in 0.01 M
phosphate-buffered saline (pH 7.4). Sections were incubated with pri-
mary antibodies for 48 h at 4 °C, washed and incubated with secondary
antibodies for 2 h at room temperature in blocking buffer. The nuclear
dyeHoechst 33258 or DAPIwas added after secondary antibody incuba-
tion. Sections were then cover-slipped and examined, images were ac-
quired using laser confocal microscopy (Olympus Fluoview).

For BrdU staining, tissue sections were treated with 2N HCl for
20 min at 30 °C. Sections were then washed with PBS followed by
incubation for 10 min at room temperature with 0.1 M borate buffer
(pH 8.5). Sectionswere thenwashedwith PBS and processed for immu-
nocytochemistry as above.

Sodium-fluorescein uptake into the brain

We assessed BBB permeability in normal rats (N = 3) and rats 3 h
post-MCAO (N = 3) using the methods of Fabis et al. (2008) or
Hawkins and Egleton (2006). Briefly, rats were anesthetized and per-
fused transcardially with oxygenated 0.9% normal saline followed
by normal saline containing 1 g/L sodium fluorescein for 3–5 min
(3 ml/min per hemisphere), followed by a 5minwashoutwith normal
saline (Hawkins and Egleton, 2006). An incision of right atrium was
made immediately preceding the delivery of solution to provide pres-
sure relief. Alternately, 10% sodium fluorescein in normal saline
(1.5 ml) was injected into peritoneal cavity as previously described
(Fabis et al., 2008). The markers were allowed to circulate in the rats
for 60 min before transcardial perfusion with 200 ml normal saline.
Brains were quickly removed after perfusion, snap-frozen then stored
at −80 °C until sectioning. Coronal sections (30 μm) were mounted
onto slides and visualized in an Olympus confocal microscope.

Quantitative analysis

Every other coronal section (SFO and AP), or every fourth section
(ME, bregma anteroposterior: from −2.20 to −3.30 mm) starting
from the first rostral section of each CVO region was selected for
immunostaining and quantitative analysis. All BrdU-positive nuclei in
each specific CVO region (i.e. SFO, ME, AP) were counted at 200×
magnification.

Statistical analysis

All data are presented as the mean ± SEM. The statistical signifi-
cance of the mean was calculated by Student's t-test. A P-value b 0.05
was considered significant.
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Results

Ischemic injury and bFGF infusion induces a sustained proliferation of NSCs
in SVZ and CVO niches

In these studies, we used control (unoperated; N = 3 in 4d group,
N = 3 in 14d group) rats and rats (N = 4 in 4d group, N = 5 in 14d
group) with moderate to severe ischemic damage after MCAO (Yang
et al., 2010 as modified in Goldmacher et al. (2013)). All rats were ad-
ministered BrdU as described in Materials and methods to assess cell
proliferation in the SVZ and a variety of CVO regions (subfornical
organ: SFO, median eminence: ME, area postrema: AP) at various
times after experimental stroke. We found that by 4 days following
MCAO, CVO niches (except for AP) exhibited a significant increase in
the number of BrdU-labeled cells as compared to controls (Figs. 1A–I),
similar in magnitude to that observed in the SVZ (not shown here).
With time, this proliferative effect was enhanced and sustained such
that the number of BrdU/Nestin, BrdU/Sox2, and BrdU/GFAP double
positive cells was nearly doubled in all CVOs examined (Figs. 1J–R;
Suppl. Fig. 1) by 14 days after stroke. This injury-induced effect was
qualitatively and quantitatively similar to that observed when rats
were intraventricularly infused with the stem cell mitogen bFGF for
14 days (Figs. 1S–X).

Besides stem cells, immune cells which are also highly proliferative
can infiltrate the brain after ischemia (Gelderblom et al., 2009;
Grønberg et al., 2013). To distinguish these cells from proliferating
stem cells, brain sections were stained for the presence of blood-borne
cells (CD-3 for T-cells, IBA-1 for macrophages and microglia and MPO
for neutrophils). We found no BrdU+ cells in the niches that co-
Fig. 4. Enhanced cell proliferation and distinctive cell morphology in three different zones of the
side contralateral to stroke. Along the 3V, many BrdU+ cells express the neural stem cell mar
subependymal zone, middle transitional zone and lower ependymal zone) shown at higher m
markers Nestin and GFAP (E). (F–H): Boxed areas in E representing different 3V zones sho
zone (G′–G″) and lower ependymal wall (H′–H″). Dashed line in F″ and G″ indicate the epen
NSC in F′–F″ and the mixture of both cell types in G′–G″.
labeled with T-cell (Suppl. Fig. 2) or neutrophil (Suppl. Fig. 3) markers
though some double-labeled cells were observed in the infarct
core at 4 days post-MCAO. Only proliferating (BrdU + IBA-1+)
macrophages/microglia were increased (Suppl. Fig. 4), contributing to
the overall number of proliferating cells seen in niche and infarct sites
on the ischemic side of the brain. Similar results were observed at
14 days post-MCAO (data not shown).

To assess whether these proliferating cells were indeed NSCs, we
next double (Fig. 2) and triple (Fig. 3) labeled for BrdU and known phe-
notypicmarkers of stem cells, such as nestin, Sox2 andGFAP. Using con-
focal microscopy, we found that BrdU+CVO cells from the SFO,ME and
AP (Figs. 2B,D; E–H; J,L;M–P), similar to traditional stem cells of the SVZ
(Figs. 2A,C,I,K), co-expressed the NSC markers GFAP, nestin and Sox2 at
4 and 14 days after MCAO (Figs. 2, 3).

Stroke induces cell proliferation in other novel niches along third and fourth
ventricles

Importantly, besides the ME, proliferation of Sox + and nestin +
BrdU-labeled NSCs was also greatly enhanced at other sites along the
3V but only on the side ipsilateral to the ischemia (Ipsi), as compared
to the contralateral (Contra) uninjured side (Fig. 4). In fact, several dis-
tinct zones of proliferation were identified. The first zone was found
along the upper wall of the third ventricle where dividing cells, like
those in the SVZ and CVO stem cell niches, were subependymal in loca-
tion and co-labeled for BrdU and NSC markers Sox2, nestin and GFAP
(Figs. 4B,F).

Another highly proliferative cell populationwas observed atmid-3V
level in ischemic rats. These BrdU+ cells could be distinguished
third ventricle (3V) on day 4 afterMCAO. Ipsi indicates the side ipsilateral and Contra the
ker Sox2 (A). Boxed areas in A representing different 3V zones of proliferation (i.e. upper
agnification (B–D). Along the third ventricle, many BrdU+ cells express neural stem cell
wing triple-labeled cells from upper subependymal zone (F′–F″), middle transitional
dymal layer. Note distinct tanycyte morphology of dividing cells in H′–H″ compared to
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from other NSCs by their ependymal location and their long nestin+
processes which did not always co-label for GFAP (Figs. 4D,H). These
cells have been referred to as tanycytes (Robins et al., 2013) exhibited
the greatest proliferation on the infarcted side (Figs. 4D,H). Interesting-
ly, the region between zones B and D or F and Hwere transitional in na-
ture, containing both dividing ependymal and subependymal cells
(Figs. 4C,G).

Likewise, we found novel sites of cell proliferation along the whole
fourth ventricle but particularly at the lateral-most recesses. In the qui-
escent control brain, these regions contained very few Brdu+ cells.
However, by 14 days following the stroke, the number was enhanced
(Figs. 6H–K).

To rule out the possibility that NSCs in these novel sites hadmigrated
there from other more established niches like the SVZ, a viral vector
(AAV-CAG-GFP) was injected into the right lateral ventricle to label
the SVZ region a day prior to MCAO. Fourteen days later, we found no
evidence of labeled cells in the 3V (Fig. 7) or 4V (data not shown)
niches.

Proliferating CVO and 3V and 4V stem cells differentiate to express glial and
neuronal markers

We next examined the potential of injury-induced CVO, 3V and 4V
NSCs to develop down expected differentiation routes towards neurons,
Fig. 5.Differentiation of BrdU+cells into oligodendrocyte progenitors and neurons inCVO regio
into oligodendrocyte progenitors identified by staining for Olig2 (A, C, E). Newly generated (Br
cation of labeled uni/bi-polar and stellate-shaped cells found in boxed areas and indicated by
oligodendrocyte progenitors, astrocytes and neurons of total BrdU+ proliferating cells as comp
oligodendroglia and astrocytes. In these studies, BrdU was administered
to rats for 4 days after MCAO and brains were examined immediately
thereafter or 14 days post-MCAO. We found proliferating cells in the
CVOs (Fig. 5) and in all 3V and 4V zones (Fig. 6) which co-labeled with
the oligodendrocyte progenitor cell marker Olig2 at both 4 days and
14 days post-MCAO. These cells were significantly increased in number
compared to controls (Fig. 5 Table). Since the astrocyte marker GFAP
also marks NSCs, it is not ideal for tracking astrocyte differentiation
unless simultaneously used with nestin (found in NSCs but not
astrocytes). Indeed, using these two markers, we find GFAP + BrdU +
nestin-astrocyte progenitor cells at 4 (Fig. 3G arrowhead) and 14
(Fig. 3I arrowheads) days post-MCAO in the CVOs as well as other
niche sites (data not shown). Importantly, when neurogenesis was
tracked using the early neuron marker doublecortin (Dcx), we also ob-
served increased BrdU+/Dcx+ cells in CVOs (Fig. 5) and in 3V and 4V
niches (Fig. 6) at 14 days post-MCAO. These cells likely withdrew from
cell division 10 days earlier, at the end of BrdU treatment, before differ-
entiation into postmitotic neurons. Interestingly, the proportion of differ-
entiating neurons was significantly increased after MCAO compared to
oligodendrocytes and astrocytes (Fig. 5 Table), representing a shift to-
wards neurogenesis in the injured brain. Likewise, bFGF infusion also re-
sulted in the differentiation of Dcx+ neurons at these sites (Fig. 8).

Finally, in some cases BrdU + nestin+ cells could be observed in a
chain formation potentially migrating away from the 3V andME niches
ns onday 14 afterMCAO. BrdU+cells in the SFO (A, B)ME (C, D) andAP (E, F) differentiate
dU+) neurons were also identified by the neuronal marker Dcx (B, D, F). Higher magnifi-
arrows are shown in insets. Table shows increases in the percentages of newly generated
ared to controls in CVO regions. Data is expressed as mean ± S.E.M. *p b 0.05, **p b 0.01.



Fig. 6. Differentiation of BrdU+ cells into oligodendrocyte progenitors and neurons in 3V and 4V regions on day 14 after MCAO. Along the third ventricle, some BrdU+ cells express the
oligodendrocyte progenitor marker (Olig2) on the side ipsilateral (Ipsi) to the stroke (A) as compared to the contralateral (Contra) side. The double-labeled cells in boxed areas in A are
shown in highermagnification (B, C). Some newly generated (BrdU+) neuronswere also identified by the neuronal marker Dcx (D). The double-labeled uni/bi-polar and stellate-shaped
cells in the boxed areas in D are shown in higher magnification (E, F, G). Along fourth ventricle lateral recesses, BrdU+ cells can be found following stroke (H). These cells differentiated
into Dcx+ neurons by 14 days post-MCAO (I–J). Some BrdU-Dcx+ neurons can also be found at the same time (K–L). Boxed regions are shown in higher magnification.
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(Suppl. Fig. 5) to the infarct core where differentiated stem cell progeny
(BrdU + Dcx+, BrdU + GFAP+ and BrdU + Olig2 cells) can be seen
(Suppl. Fig. 5).

Increased BBB leakage in all brain stem cell niches after stroke

The SVZ and CVOs are highly vascularized brain regions (Figs. 9A–E),
containing fenestrated capillaries associated with a permeable BBB
(Johnson andGross, 1993; Tavazoie et al., 2008).Wewonderedwhether
BBB leakiness was common to all stem cell niches, even novel sites in
the 3V and 4V, and whether permeability was increased in these loca-
tions following disruption of the BBB due to stroke. To examine these is-
sues, we injected sodium-fluorescein into control and MCAO rats and
examined all presumptive brain NSC niches. Consistent with their
fenestrated capillaries, we found fluorescein leakage into all stem cell
niches in the control brain, including the SVZ, CVOs, 3V and 4V
(Figs. 9F,H,J,L,N). Following ischemic injury, increased leakage of fluo-
rescein was seen at the stroke site (Fig. 9G) and apparently in all niche
regions (Figs. 9I,K,O arrows). In fact, because fluorescence intensity
was so great, it was necessary to reduce exposure time for all MCAO im-
ages. Nonetheless, we found that the sites of stroke-enhanced fluores-
cence paralleled stroke-enhanced cell proliferation/neurogenesis.
Thus, both parameters were increased in the SVZ and 3V, particularly
on the ipsilateral side where BBB compromise was likely greatest as a
result of the nearby stroke (Abo-Ramadan et al., 2009; Engelhardt and
Liebner, 2014). In the brainstem, at a distance from the stroke site, we
observed increased fluorescence throughout the 4V similar to 4V sites
of neurogenesis (Fig. 9M). Taken together, these data indicate a positive



Fig. 7. Expression of AAV-CAG-GFP in NSCs 14 days after injection of virus into the lateral ventricle near the SVZ region and MCAO. In low power view (A), please note GFP+ cells (see
inset) in SVZ and immediately adjacent to the injection site. In contrast, GFP+ cells were not observed in the 3V and ME niches (B).
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correlation between stem cell proliferation and the degree of BBB leak-
iness in the adult brain, both of which are amplified after ischemic
injury.

Discussion

Although for many years, the brain was believed to be a static struc-
ture, in the past several decades it has become widely accepted that
two zones of neurogenesis exist, both in the adult forebrain. Thus,
throughout life, NSCs found in the SVZ of the anterolateral ventricle
Fig. 8.Neurogenesis along the third ventricle 14 days after intraventricular bFGF infusion. BrdU
areas from (A) show double-labeled cells in two different zones of 3V wall at higher magnifica
and the SGZ of the hippocampal dentate gyrus respectively give rise to
new olfactory interneurons and hippocampal granule neurons (Rakic,
1985a,b; Doetsch et al., 1999b; Doetsch, 2003a,b; Alvarez-Buylla and
Lim, 2004; Lie et al., 2004; Mignone et al., 2004). Several years ago,
our laboratory further showed that an additional series of adult stem
cell niches called the CVOs exist along the ventricular midline
(Bennett et al., 2009). As with the SVZ and SGZ, CVO cells stained for
the classic NSC markers GFAP, nestin and vimentin and divided to give
rise to new neurons and glia in the adult brain. Moreover, following
their heterotopic transplantation, CVO-derived NSCs had the potential
+ cells with neuronal identities observed in the 3V after staining with Dcx (A). The boxed
tion (B–C: upper subependymal zone, D–E: transitional zone).



Fig. 9. The stem cell niches in adult brain are highly vascularized and increased blood–brain-barrier permeability is observed after stroke. Abundant CD31 immunoreactive blood vessels
present in SVZ, SGZ, SFO, ME and AP regions (A–E). Note the absence of CD31 immunoreactive blood vessels in the center of ME indicating its unique vasculature profile of the CVOs (D).
Sodium-fluorescein labels almost all stem cell niches in the normal brain, including the SVZ, CVOs (F, H, J, L and N). Note fluorescence particularly in novel 3V and 4V (lateral recesses)
niches (J, L, M). Three hours after MCAO, sodium-fluorescein labeling was found in the infarcted regions (cerebral cortex and striatum) (G, I) as well as expanded areas surrounding
CVOs, 3V and 4V niches (I, K,M andO). Fluorescencewas so bright that allMCAO imageswere reduced in intensity. Arrows indicate enhanced spread of fluorescein in CVO regions. Dashed
lines indicate fluorescein leakage due to stroke infarct.
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to integrate into the rostral migratory stream and differentiate into ma-
ture neurons in the olfactory bulb, similar to SVZ-derived NSCs (Bennett
et al., 2010).

In this study, we examined neurogenesis/gliogenesis in the SVZ and
CVO sites, both in the quiescent brain where NSC proliferation remains
quite low and following ischemic injurywhere NSCs are thought to play
a role in repair (Temple, 2001; Shen et al., 2004; Barkho et al., 2006). In-
deed, we found a dramatic and sustained rise in NSC proliferation in the
SVZ and CVOs after focal stroke. These findings are consistent with sev-
eral recent reports showing similar increases in the SVZ and SGZ of the
MCAO-lesioned rat (Zhang et al., 2001, 2007; Thored et al., 2006; Wang
et al., 2011; Sanin et al., 2013), and significantly, in ischemic patients
(Sanin et al., 2013). Importantly, the increase in proliferating cells
could not be attributed to the infiltration of proliferating immune cells
(T-cell, neutrophil) after stroke although there was a rise in dividing
IBA-1+ (nestin negative) macrophages/microglia on the ischemic side.

Of particular significance, this study further revealed unexpected
collections of dividing (BrdU+) stem cells at other sites along the ven-
tricular system, in structures unrelated to the SVZ and CVO niches.
These sites, which had not been detected previously, became apparent
as a result of the enhanced proliferation seen after stroke or bFGF stim-
ulation. Of particular note were the groups of BrdU+ cells seen along
the third ventricle. These cells fell into two distinct classes, one of
which was subependymal and stained positively for nestin, GFAP and
Sox2. This novel cell groupwas similar in location and phenotypic char-
acterization to NSCs found in the SVZ and CVOs. The second group of
cells was composed of ependymal cells with long processes projecting
away from the ventricular wall. These cells known as tanycytes have
been described previously both in the quiescent brain (Chiasson et al.,
1999; Spassky et al., 2005) and after injury (Lindvall and Kokaia,
2008; Carlén et al., 2009; Barnabé-Heider et al., 2010; Robins et al.,
2013) or other inductive cues (Sundholm-Peters et al., 2004; Xu et al.,
2005; Zhang et al., 2007; Migaud et al., 2010; Lee et al., 2012). Lying be-
tween these two groups of cells, we noted a transitional zone composed
of a mixture of dividing subependymal and ependymal cells.

In addition, proliferating BrdU+ cells were also observed along the
lining of the fourth ventricle, particularly at the lateral recesses, near
the aperture connecting the ventricular and subarachnoid spaces.
These sites likely had escaped previous discovery due to their low num-
ber in the uninjured brain but stroke-enhanced cell proliferation en-
abled their detection here. The fact that we found no evidence of
virally (AAV-CAG-GFP) labeled SVZ NSCs in 3V or 4V 14 days after
MCAO suggests that stem cells in these regions did not migrate there
from other areas of high stem cell proliferation (i.e. SVZ). Instead, the
3V and 4V are likely novel niches for stem cell production.

Consistentwith this notion ofwidespread ventricular niches are ear-
lier studies demonstrating that cells isolated from the adult lateral, third
and fourth ventricles (sites of CVO, 3V and 4V niches) generate
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neurospheres in culture (Reynolds andWeiss, 1992; Weiss et al., 1996;
Chouaf-Lakhdar et al., 2003; Bauer et al., 2005; Charrier et al., 2006;
Itokazu et al., 2006). The induction of stem cells was mimicked in all
these sites by intraventricular infusion of the cell mitogen bFGF. Taken
together, thesefindings suggest that stem cell niches are present atmul-
tiple sites along the entire ventricular system, not only in the forebrain
as once thought, and that stem cells in these niches are increased dra-
matically following injury or bFGF.

Significantly, in all the stem cell niches, we found BrdU+ labeled
Dcx+ neurons, Olig2+ oligodendrocytes and GFAP + nestin-astrocyte
progenitors 14 days after MCAO injury and bFGF infusion. Proportional-
ly, there was a shift towards neurogenesis even in niches which pre-
dominantly give rise to glia in the absence of injury (Bennett et al.,
2009). Finally, in some cases, clusters of cells appeared to migrate in a
chain away from these niches, much like the rostral migratory stream
leaving the SVZ (Pencea et al., 2001). And indeed, differentiated stem
cell progeny (BrdU + Dcx+, BrdU + GFAP+ and BrdU + Olig2 cells)
were observed in the infarct region, although their niche of origin
could not be determined. Regardless of where these cells derive from,
our results are consistent with widespread and greatly amplified
neurogenesis and gliogenesis in the adult brain after injury, suggesting
a potential role for these cells in brain repair.

However, just how these cells are signaled to proliferate and differ-
entiate after injury remains unknown. The fact that MCAO inductive
cuesmust traverse long distances from the site of injury to reach niches
even in the lower brainstem raises the prospect of a systemic route of
communication. As shown here and elsewhere (Johnson and Gross,
1993; Shen et al., 2008; Tavazoie et al., 2008), the CVOs and SVZ indeed
contain a rich vasculature of fenestrated capillaries, ideally suited for the
delivery of systemic signals. Consistentwith this finding, we found leak-
age of injected sodium fluorescein at all of the sites in which induced
proliferation and neurogenesis/gliogenesis had been observed, includ-
ing SVZ, CVO, 3V and 4V niches. Moreover, following stroke, which fur-
ther disrupts BBB integrity and function (Abo-Ramadan et al., 2009;
Engelhardt and Liebner, 2014),we observed greater spread offluoresce-
in at these sites. Together, these data suggest that blood-borne cues
could signal even distant stem cell niches (Slevin et al., 2000; Zhang
et al., 2000; Offner et al., 2006; Li et al., 2013), communicating with
them through fenestrated capillaries made more leaky after stroke.
However, the fact that ICV infusion of bFGF which does not reduce
BBB function (Murakami et al., 2008; Huang et al., 2012) also induces
proliferation suggests that CSF cues may also signal stem cell niches
after injury. Finally, local factors, such as VEGF and TNF-α, which have
been shown to be important modulators of neurogenesis in the SVZ
after stroke (Kovács et al., 1996; Thored et al., 2006; Iosif et al., 2008;
Lee et al., 2008; Kokaia et al., 2012) may also play a key role in CVO
and 3/4V niches.

The precise source and identity of these cues and the molecular
pathways via which they signal adult stem cell niches to increase prolif-
eration, neurogenesis and gliogenesis are important new lines of inves-
tigation. Additionally, in the future, it will be key to show which niches
give rise to neurons and glia after injury and that these newly minted
neurons and glia deriving from these niches indeed develop into func-
tional neurons, astrocytes and oligodendrocytes capable of repairing in-
jury in the adult brain.
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